Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received October 15, 2007
Accepted October 30, 2007
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고분자 태양전지의 결정구조와 특성의 상관성
Correlation Between Crystal Structure and Properties in Polymer Solar Cells
미네소타대학교 화학공학과, 55455 미네소타주 미네아폴리스시 워싱턴가 421
Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN 55455, United States
Korean Chemical Engineering Research, February 2008, 46(1), 88-93(6), NONE Epub 28 February 2008
Download PDF
Abstract
지역규칙성 폴리3핵실티오펜과 용해성 플러렌 블렌드로 이루어진 벌크이종접합 고분자 태양전지를 제작하였다. 고분자 블렌드 필름에 대한 열처리 효과가 필름의 결정 구조와 자외선/가시광선 흡수스펙트럼에 주는 영향을 조사하였다. 그 후, 열처리에 의한 필름의 결정구조와 태양전지 효율의 상관관계를 연구하였다. 그 결과, 150 ℃에서 열처리한 필름이 분자간 상호작용 및 결정성측면에서 최적이었으며, 이 때, 고분자 태양전지의 에너지 전환 효율은 3.2 %이었다.
The bulk-heterojunction polymer solar cell based on regioregular P3HT (poly(3-hexylthiophene)) and PCBM (methanofullerene [6,6]-phenyl C61-butyric acid methyl ester) was fabricated. Annealing effects on the crystal structure of polymer.fullerene blends as well as the UV-VIS electronic absorption spectroscopy were investigated. The correlation between the crystal organization of bulk-heterojunction film and the power conversion efficiency of solar cell was studied. Resultantly, the polymer solar cell annealed on 150 ℃ for 30 min, showed both the enhanced molecular interactions and the optimized crystal structure and displayed the power conversion efficiency of 3.2 %.
Keywords
References
Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F, Science, 258(5087), 1474 (1992)
Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
Halls JJM, Walsh CA, Greenham NC, Marsegila EA, Friend RH, Moratti SC, Holmes AB, Science, 376, 498 (1995)
Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC, Appl. Phys. Lett., 78, 814 (2001)
Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y, Nature Materials, 4, 864 (2005)
Ma W, Yang C, Gong Y, Lee K, Heeger AJ, Adv. Funct. Mater., 15(10), 1617 (2005)
Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, Mcculloch I, Ha CS, Ree M, Nat. Mater., 5, 197 (2006)
Kim K, Liu J, Namboothiry MAG, Carroll DL, Appl. Phys. Lett., 90, 163511 (2007)
Sirringhaus H, Brown PJ, Friend RH, Nelsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Jansseen RAJ, Meijer EW, Herwig P, de Leeu WDM, Science, 401, 685 (1999)
Wu XM, Chen TA, Rieke RD, Macromolecules, 29(24), 7671 (1996)
Hiemenz PC, Lodge TP, Polymer Chemistry, CRC Press, Taylor & Francis Group (2007)
Kline RJ, McGehee MD, Toney MF, Nature Materials, 5, 222 (2006)
Bard AJ, Faulkner LR, Electrochemical Methods: Fundamental and Applications, John Wiley & Sons, Inc. (2001)
Yang X, Loos J, Vennstra SC, Verhees WJH, Wienk MM, Kroon JM, Michels MAJ, Janssen AJ, Nano Lett., 5(4), 579 (2005)
Merlo JA, Frisbie CD, J. Polym. Sci. B: Polym. Phys., 41(21), 2674 (2003)
Kim JY, Frisbie CD, unpublished results
Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
Halls JJM, Walsh CA, Greenham NC, Marsegila EA, Friend RH, Moratti SC, Holmes AB, Science, 376, 498 (1995)
Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC, Appl. Phys. Lett., 78, 814 (2001)
Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y, Nature Materials, 4, 864 (2005)
Ma W, Yang C, Gong Y, Lee K, Heeger AJ, Adv. Funct. Mater., 15(10), 1617 (2005)
Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, Mcculloch I, Ha CS, Ree M, Nat. Mater., 5, 197 (2006)
Kim K, Liu J, Namboothiry MAG, Carroll DL, Appl. Phys. Lett., 90, 163511 (2007)
Sirringhaus H, Brown PJ, Friend RH, Nelsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Jansseen RAJ, Meijer EW, Herwig P, de Leeu WDM, Science, 401, 685 (1999)
Wu XM, Chen TA, Rieke RD, Macromolecules, 29(24), 7671 (1996)
Hiemenz PC, Lodge TP, Polymer Chemistry, CRC Press, Taylor & Francis Group (2007)
Kline RJ, McGehee MD, Toney MF, Nature Materials, 5, 222 (2006)
Bard AJ, Faulkner LR, Electrochemical Methods: Fundamental and Applications, John Wiley & Sons, Inc. (2001)
Yang X, Loos J, Vennstra SC, Verhees WJH, Wienk MM, Kroon JM, Michels MAJ, Janssen AJ, Nano Lett., 5(4), 579 (2005)
Merlo JA, Frisbie CD, J. Polym. Sci. B: Polym. Phys., 41(21), 2674 (2003)
Kim JY, Frisbie CD, unpublished results