Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 21, 2007
Accepted January 22, 2008
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
H-ZSM-5 촉매에서 n-옥탄의 촉매분해반응: 소성 및 스팀 처리 효과
Catalytic Cracking of n-Octane over H-ZSM-5 Catalysts: Effect of Calcination and Steam Treatment
충북대학교 화학공학과, 361-763 충북 청주시 흥덕구 개신동 12 1한국화학연구원 신화학연구단 미세화학기술연구팀, 305-600 대전시 유성구 장동 100
Department of Chemical Engineering, Chungbuk National University, 21 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Korea 1New Chemistry Research Division, Korea research Institute of Chemical Technology, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Korea
chshin@chungbuk.ac.kr
Korean Chemical Engineering Research, April 2008, 46(2), 291-300(10), NONE Epub 29 May 2008
Download PDF
Abstract
경질올레핀을 제조하기 위한 n-옥탄의 접촉분해반응에서 H-ZSM-5 촉매의 소성 및 스팀 처리 영향을 550~750 ℃ 범위에서 조사하였다. 소성 및 스팀 처리 온도를 높이면 H-ZSM-5 촉매의 비표면적, 기공부피 및 강산점이 줄어들었다. 650 ℃ 이상에서 스팀 처리는 제올라이트 구조 내 알루미늄의 탈알루미늄화 및 미세기공의 붕괴로 강산점이 소멸되어, 미세 기공부피가 줄어들며 입자 간 결합에 의한 중기공이 형성되었다. 27Al 및 29Si MAS NMR 스펙트럼으로부터 스팀 처리로 발생하는 탈알루미늄의 과정을 검토하였다. 제올라이트 격자의 알루미늄이 사면체 배위구조 알루미늄 → 5개 배위구조 알루미늄 → 팔면체 배위구조 알루미늄으로 변화과정을 거침을 알 수 있었다. n-옥탄 접촉 분해반응의 전환율, 경질올레핀 수율 및 에틸렌/프로필렌 비가 H-ZSM-5의 소성 및 스팀 처리 온도가 증가함에 따라 감소하는 경향을 나타내었으며, 스팀 처리는 소성 처리보다 활성저하 정도가 더욱 심하여 750 ℃에서 24시간 스팀 처리 후에는 H-ZSM-5가 촉매로서의 기능을 상실하여 열분해반응에 근접하는 전환율, 경질올레핀 수율 및 에틸렌/프로필렌 비의 결과를 나타내었다.
Catalytic cracking of n-octane was carried out over H-ZSM-5 zeolite catalysts after calcination with air and steaming with 100% steam in the temperature range of 550-750 ℃ for 24 h and compared with the results of thermal cracking. The increase of calcination and steaming temperature resulted in the decrease of surface area, pore volume, and strong acid sites, which was mainly caused by the dealumination of H-ZSM-5 framework. It was found by 27Al and 29Si MAS NMR that the dealumination was proceeded through the transformation process of tetrahedral framework Al→penta-cordinated Al→octahedral framework Al and the phenomena was much more severe in steaming conditions than that of calcination. In the catalytic cracking of n-octane, as the temperatures of calcination and steaming were increased, the conversion of n-octane, the selectivity of light olefins and ethylene to propylene ratio were decreased due to the dealumination of framework aluminum resulting the loss of acidic strengths. The conversion, selectivity of light olefins and ethylene to propylene ratio reached almost to the level of thermal cracking after steaming at 750 ℃ for 24 h.
References
Park YK, Jeon JY, Han SY, Kim JR, Lee CW, HWAHAK KONGHAK, 41(5), 549 (2003)
Zhao GL, Teng JW, Zhang YH, Xie ZK, Yue YH, Chen QL, Tang Y, Appl. Catal. A: Gen., 299, 167 (2006)
Abbot J, Dunstan PR, Ind. Eng. Chem. Res., 36(1), 76 (1997)
Smirniotis PG, Ruckenstein E, Ind. Eng. Chem. Res., 33(4), 800 (1994)
Lischke G, Schreier E, Parlitz B, Pitsch I, Lohse U, Woettke M, Appl. Catal. A: Gen., 129(1), 57 (1995)
Corma A, Orchilles AV, Microporous Mesoporous Mater., 35, 21 (2000)
Mao RLV, Melancon S, Gauthier-Campbell C, Kletnieks P, Catal. Lett., 73(2-4), 181 (2001)
Melancon S, Le Van Mao R, Kletnieks P, Ohayon D, Intem S, Saberi MA, McCann D, Catal. Lett., 80(3-4), 103 (2002)
Liu CH, Gao XH, Zhang ZD, Zhang HT, Sun SH, Deng YQ, Appl. Catal. A: Gen., 264(2), 225 (2004)
Xue NH, Chen XK, Nie L, Guo XF, Ding WP, Chen Y, Gu M, Xie ZK, J. Catal., 248(1), 20 (2007)
Blasco T, Corma A, Martinez-Triguero J, J. Catal., 237(2), 267 (2006)
Jung JS, Kim TJ, Seo G, Korean J. Chem. Eng., 21(4), 777 (2004)
Chen D, Sharma S, Cardona-Martinez N, Dumesic JA, Bell VA, Hodge GD, Madon RJ, J. Catal., 136, 392 (1992)
Jeong JH, Lee JW, Rhee HK, HWAHAK KONGHAK, 31(3), 279 (1993)
Chang CD, Lang WH, Smith RL, J. Catal., 56, 169 (1979)
Kaeding WW, Butter SA, J. Catal., 61, 155 (1980)
Kaeding WW, Chu C, Young LB, Weistein B, Butter SA, J. Catal., 67, 159 (1981)
Martens JA, Perez-Pariente J, Sastre E, Corma A, Jacobs PA, Appl. Catal., 45, 85 (1988)
Degnan TF, Chitnis GK, Schipper PH, Microporous Mesoporous Mater., 35, 245 (2000)
Treacy MMJ, Higgins JB, Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed. Elsevier, Amsterdam (2007)
Lippens BC, Boer JH, J. Catal., 4, 319 (1965)
Boer JH, Linsen BG, Osinga TH, J. Catal., 4, 643 (1965)
Boer JH, Linsen BG, van der Plas T, Zondervan GJ, J. Catal., 4, 649 (1965)
Lee SH, Lee DK, Shin CH, Park YK, Wright PA, Lee WM, Hong SB, J. Catal., 215(1), 151 (2003)
Corma A, Martinez-Triguero J, Valencia S, Benazzi E, Lacombe S, J. Catal., 206(1), 125 (2002)
Fyfe CA, Gobbi GC, Klinowski J, Thomas JM, Ramdas S, Nature, 296, 530 (1982)
Wojciehowski BW, Corma A, Catalytic Cracking: Catalysts, Chemistry, and Kinetics, Chemical Industries Series, Dekker, California, 25 (1986)
Zhao GL, Teng JW, Zhang YH, Xie ZK, Yue YH, Chen QL, Tang Y, Appl. Catal. A: Gen., 299, 167 (2006)
Abbot J, Dunstan PR, Ind. Eng. Chem. Res., 36(1), 76 (1997)
Smirniotis PG, Ruckenstein E, Ind. Eng. Chem. Res., 33(4), 800 (1994)
Lischke G, Schreier E, Parlitz B, Pitsch I, Lohse U, Woettke M, Appl. Catal. A: Gen., 129(1), 57 (1995)
Corma A, Orchilles AV, Microporous Mesoporous Mater., 35, 21 (2000)
Mao RLV, Melancon S, Gauthier-Campbell C, Kletnieks P, Catal. Lett., 73(2-4), 181 (2001)
Melancon S, Le Van Mao R, Kletnieks P, Ohayon D, Intem S, Saberi MA, McCann D, Catal. Lett., 80(3-4), 103 (2002)
Liu CH, Gao XH, Zhang ZD, Zhang HT, Sun SH, Deng YQ, Appl. Catal. A: Gen., 264(2), 225 (2004)
Xue NH, Chen XK, Nie L, Guo XF, Ding WP, Chen Y, Gu M, Xie ZK, J. Catal., 248(1), 20 (2007)
Blasco T, Corma A, Martinez-Triguero J, J. Catal., 237(2), 267 (2006)
Jung JS, Kim TJ, Seo G, Korean J. Chem. Eng., 21(4), 777 (2004)
Chen D, Sharma S, Cardona-Martinez N, Dumesic JA, Bell VA, Hodge GD, Madon RJ, J. Catal., 136, 392 (1992)
Jeong JH, Lee JW, Rhee HK, HWAHAK KONGHAK, 31(3), 279 (1993)
Chang CD, Lang WH, Smith RL, J. Catal., 56, 169 (1979)
Kaeding WW, Butter SA, J. Catal., 61, 155 (1980)
Kaeding WW, Chu C, Young LB, Weistein B, Butter SA, J. Catal., 67, 159 (1981)
Martens JA, Perez-Pariente J, Sastre E, Corma A, Jacobs PA, Appl. Catal., 45, 85 (1988)
Degnan TF, Chitnis GK, Schipper PH, Microporous Mesoporous Mater., 35, 245 (2000)
Treacy MMJ, Higgins JB, Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed. Elsevier, Amsterdam (2007)
Lippens BC, Boer JH, J. Catal., 4, 319 (1965)
Boer JH, Linsen BG, Osinga TH, J. Catal., 4, 643 (1965)
Boer JH, Linsen BG, van der Plas T, Zondervan GJ, J. Catal., 4, 649 (1965)
Lee SH, Lee DK, Shin CH, Park YK, Wright PA, Lee WM, Hong SB, J. Catal., 215(1), 151 (2003)
Corma A, Martinez-Triguero J, Valencia S, Benazzi E, Lacombe S, J. Catal., 206(1), 125 (2002)
Fyfe CA, Gobbi GC, Klinowski J, Thomas JM, Ramdas S, Nature, 296, 530 (1982)
Wojciehowski BW, Corma A, Catalytic Cracking: Catalysts, Chemistry, and Kinetics, Chemical Industries Series, Dekker, California, 25 (1986)