Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 17, 2007
Accepted November 1, 2007
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
회분식 공정이 포함된 화학산업에서의 공급사슬 관리 모델 개발
A Development of SCM Model in Chemical Industry Including Batch Mode Operations
동국대학교 생명·화학공학과, 100-715 서울시 중구 필동 3가 26
Department of Chemical & Biochemical Engineering, Dongguk University, 26 3-ga, Pil-dong, Chung-gu, Seoul 100-715, Korea
eslee@dgu.edu
Korean Chemical Engineering Research, April 2008, 46(2), 316-329(14), NONE Epub 29 May 2008
Download PDF
Abstract
최근의 급변하는 시장 상황의 변화와 제품의 수요에 대한 다양한 요구는 회분식 공정에 의한 다품종 소량생산으로의 전환을 가져오게 하였다. 이러한 회분식 공정은 주로 정밀 화학 관련 제품들인 의약품, 생화학 제품, 농약, 고분자 소재 등의 생산에 사용되어 왔지만, 근래에는 윤활유, 섬유, 석유 화학, 식품 같은 제품의 생산에도 널리 적용되고 있다. 그러나 회분식 공정은 원료의 공급, 제품의 가격 등과 같은 불확실 변수에 의한 조업의 변화가 자주 발생하는 단점이 있다. 이러한 조업의 변화는 조업시간의 변동과 각 부분별 예측량이 달라져 시장 경쟁력을 잃게 된다. 이에 공급망 상에 위치한 각 부서별, 기업별 협력과 조정을 통한 총체적 관점에서의 최적화를 추구하는 공급사슬 관리에 관한 관심이 고도되고 있다. 이에 본 논문에서는 회분식 공정에 공급사슬 관리 기법을 도입하여 원자재의 구매에서부터 분배에 이르는 전과정에 대한 총체적인 최적해를 찾고 각 공급사슬간의 영향력을 조사, 분석하였다. 또한 본 논문에서는 생산계획과 상세일정계획 모델의 통합과 수요에 대한 단계별 예측을 통해 시장 변화와 불확실 변수(uncertainty)에 대한 적절한 대응방안을 모색하여, 회분식 공정에서의 공급사슬 관리 모델을 개발하였다. 이와 함께 각각의 공급사슬간 인터페이스를 통하여 정보와 물류의 통합이 이루어지게 하여, 실제 주문과 수요의 변화에 대하여 생산계획, 구매계획, 일정계획 및 분배계획을 수립하여 안정적인 공급이 이루어지게 하였다.
Recently the increased attention pays on the processing of multiple, relatively low quantity, high valueadded products resulted in adoption of batch process in the chemical process industry such as pharmaceuticals, polymers, bio-chemicals and foods. As there are more possibilities of the improvement of operations in batch process than continuous processes, a lot of effort has been made to enhance the productivity and operability of batch processes. But the chemical process industry faces a range of uncertainties factors such as demands for products, prices of product, lead time for the supply of raw materials and in the production, and the distribution of product. And global competition has made it imperative for the process industries to manage their supply chains optimally. Supply chain management aims to integrate plants with their supplier and customers so that they can be managed as a single entity and coordinate all input/output flows (of materials, information) so that products are produced and distributed in the right quantities, to the right locations, and at the right time.The objective of this study is to solve the purchase, distribution, production planning and scheduling problem, which minimizes the total costs of production, inventory, and transportation under uncertainty. And development of SCM model in chemical industry including batch mode operations. Through that, the enterprise can respond to uncertainty. Also integrated process optimal planning and scheduling model for manufacturing supply chain. The result shows that, the advantage of supply chain integration are quality matters seen by customers and suppliers, order schedules, flexibility, cost reduction, and increase in sales and profits. Also, an integration of supply chain (production and distribution system) generates significant savings by trading off the costs associated with the whole, rather than minimizing supply chain costs separately.
Keywords
References
Ku HM, Karimi IA, Ind. Eng. Chem. Res., 27, 1840 (1988)
Sahinidis NV, Grossmann IE, Comput. Chem. Eng., 13(9), 1049 (1989)
Birewar DB, Grossmann IE, Ind. Eng. Chem., 28, 570 (1990)
Subrahmanyam S, Peknyt JF, Reklaitis GV, Ind. Eng. Chem. Res., 33(11), 2688 (1994)
Ku HM, Rajagopalan D, Karimi IA, Chem. Eng. Prog., Aug., 35 (1987)
Guillen G, Badell M, Espuna A, Puigjaner L, Comput. Chem. Eng., 30(3), 421 (2006)
Sundaramoorthy A, Karimi IA, Ind. Eng. Chem. Res., 43(26), 8293 (2004)
Perea-Lopez E, Ydstie BE, Grossmann IE, Comput. Chem. Eng., 27(8-9), 1201 (2003)
Guillen G, Mele E, Bagajewicz MJ, Espuna A, Puigjaner L, Chem. Eng. Sci., 60(6), 1535 (2005)
Mendez CA, Cerda J, Grossmann IE, Harjunkoski I, Fahl M, Comput. Chem. Eng., 30(6-7), 913 (2006)
Applequist GE, Pekny JF, Reklaitis GV, Comput. Chem. Eng., 24(9-10), 2211 (2000)
Tsiakis P, Shah N, Pantelides CC, Ind. Eng. Chem. Res., 40(16), 3585 (2001)
Grossmann I, AIChE J., 51(7), 1846 (2005)
Brooke A, Kendrick D, Meeraus A, B&F Publishing Company (1992)
Sahinidis NV, Grossmann IE, Comput. Chem. Eng., 13(9), 1049 (1989)
Birewar DB, Grossmann IE, Ind. Eng. Chem., 28, 570 (1990)
Subrahmanyam S, Peknyt JF, Reklaitis GV, Ind. Eng. Chem. Res., 33(11), 2688 (1994)
Ku HM, Rajagopalan D, Karimi IA, Chem. Eng. Prog., Aug., 35 (1987)
Guillen G, Badell M, Espuna A, Puigjaner L, Comput. Chem. Eng., 30(3), 421 (2006)
Sundaramoorthy A, Karimi IA, Ind. Eng. Chem. Res., 43(26), 8293 (2004)
Perea-Lopez E, Ydstie BE, Grossmann IE, Comput. Chem. Eng., 27(8-9), 1201 (2003)
Guillen G, Mele E, Bagajewicz MJ, Espuna A, Puigjaner L, Chem. Eng. Sci., 60(6), 1535 (2005)
Mendez CA, Cerda J, Grossmann IE, Harjunkoski I, Fahl M, Comput. Chem. Eng., 30(6-7), 913 (2006)
Applequist GE, Pekny JF, Reklaitis GV, Comput. Chem. Eng., 24(9-10), 2211 (2000)
Tsiakis P, Shah N, Pantelides CC, Ind. Eng. Chem. Res., 40(16), 3585 (2001)
Grossmann I, AIChE J., 51(7), 1846 (2005)
Brooke A, Kendrick D, Meeraus A, B&F Publishing Company (1992)