ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 27, 2007
Accepted November 19, 2007
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

보조계면활성제가 비이온 계면활성제의 Water in Oil 마이크로에멀젼을 이용한 실리카 나노입자 제조에 미치는 영향

Effect of Cosurfactant on Preparation of Silica Nanoparticles using Water in Oil Microemulsion of Nonionic Surfactant

동국대학교 생명화학공학과, 100-715 서울시 중구 필동 3가 26
Department of Chemical and Biochemical Engineering, Dongguk University, 26 3-ga, Pil-dong, Jung-gu, Seoul 100-715, Korea
jongchoo@dongguk.edu
Korean Chemical Engineering Research, April 2008, 46(2), 356-368(13), NONE Epub 29 May 2008
downloadDownload PDF

Abstract

본 연구에서는 계면활성제, 오일, 암모니아 수용액으로 이루어진 시스템에 보조계면활성제 첨가가 단일상의 마이크로에멀젼을 이용한 실리카 나노입자 제조에 미치는 영향에 관하여 살펴보았다. 동일한 연속상의 오일을 사용한 경우, 단일상의 W/O 마이크로에멀젼 영역은 계면활성제와 연속상 오일의 상호작용에 의하여 결정되었다. 예를 들어 연속상 오일로 cyclohexane을 사용한 경우에는 실험에 사용한 NP(nonylphenol ethoxylate) 계면활성제 중에서 NP-5가 가장 넓은 W/O 마이크로에멀젼 영역을 나타냈으며, NP-4가 가장 좁은 W/O 마이크로에멀젼 영역을 나타내었다. NP 계면활성제 시스템에 n-propanol을 보조계면활성제로 첨가한 경우, 단일상의 영역은 연속상 오일의 종류에 따라 증가 또는 감소하였다. 예를 들어, cyclohexane과 isooctane 시스템에서는 n-propanol 첨가에 따라 단일상의 마이크로에멀젼 영역은 감소하나 n-heptane 시스템의 경우에는 증가하였다. 실리카 나노입자 실험을 수행한 결과에 의하면 NP 계면활성제 시스템의 경우 보조계면활성제를 첨가함에 따라 한 상의 영역에서의 제조와 관계없이 많은 수의 불균일한 입자가 생성되었다. LA-5 계면활성제와 n-heptane 시스템에서의 n-propanol 첨가는 입자의 크기는 감소하며, 개수는 증가하는 경향을 나타내었다. 이는 n-propanol 첨가량이 증가함에 따라 계면활성제의 소수 결합이 증가하여 마이크로에멀젼 사이의 상호 물질 교환이 잘 일어나지 않기 때문으로 생각된다.
The effects of cosurfactant on silica nanoparticles were investigated in systems containing surfactant, oil and aqueous ammonia solution where nanoparticles were prepared using a single phase water-in-oil (W/O) microemulsion. For the same oil phase, a single phase region was dependent on the interaction between surfactant and oil. For the cyclohexane system, NP-5 surfactant showed a wider single phase region than NP-4. The addition of n-propanol as a cosurfactant resulted in an increase or a decrease of a single phase W/O microemulsion region depending on the continuous oil phase. For both cyclohexane and isooctane systems, the addition of n-propanol resulted in a decrease in the single phase region. On the other hand, for n-heptane system, the addition of n-propanol expanded a single phase W/O microemulsion region. Silica nanoparticles prepared within a single phase region showed that relatively large number of particles of irregular shape were obtained with the addition of n-propanol to NP surfactant system. The addition of npropanol to LA-5 surfactant and n-heptane system produced a decrease in average particle size and an increase in the number of particles formed due to a decrease in the intermicellar exchange rate among microemulsion droplets.

References

Pierson HO, Assessing and Quantifying the Market Impact Sol-Gel Production of High Performance Ceramics and Glasses, Marco lsland, Florida (1989)
Shin SI, Oh SG, Prospect. Ind. Chem., 4(2), 40 (2001)
Suh DJ, Park OO, Jung HT, Kwon MH, Korean J. Chem. Eng., 19(3), 529 (2002)
Yun CY, Chah S, Kang SK, Yi J, Korean J. Chem. Eng., 21(5), 1062 (2004)
Kim SH, Kim KD, Song GY, Kim HT, HWAHAK KONGHAK, 41(1), 75 (2003)
Lee MH, Oh SG, Yi SC, J. Colloid Interface Sci., 226(1), 65 (2000)
Taleb A, Petit C, Pilem MP, Chem. Mater., 9(4), 950 (1997)
Nagy JB, Derouance EG, Gourgue A, Lufimpadio N, Ravet I, Verfailie JP, Physico-Chemical Characterization of Microemulsions: Preparation of Monodisperse Colloidal Metal Boride Particles, In Surfactant in Solution, (ed. Mittal, K. L.), Plenum Press, New York, 10 (1989)
Kim DW, Oh SG, Lee JD, Langmuir, 15(5), 1599 (1999)
Tanaka R, Shiromizu T, Langmuir, 17(26), 7995 (2001)
Eastoe J, Robinson BH, Steytler DC, Thorn-Lesson D, Adv. Colloid Interface Sci., 36, 1 (1991)
Sjoblom J, Lindberg R, Friberg SE, Adv. Colloid Interface Sci., 65, 125 (1996)
Darab JG, Pfund DM, Fulton JL, Linehan JC, Capel M, Ma YJ, Langmuir, 10(1), 135 (1994)
Modes S, Lianos P, J. Phys. Chem., 93(15), 5854 (1989)
Chang CL, Fogler HS, Langmuir, 13(13), 3295 (1997)
Chang CL, Fogler HS, AIChE J., 42(11), 3153 (1996)
Chattopadhyay P, Gupta RB, Ind. Eng. Chem. Res., 42(3), 465 (2003)
Arriagada FJ, Osseoasare K, J. Colloid Interface Sci., 170(1), 8 (1995)
Arriagada FJ, Osseo-Asare K, Colloids Surf., 50, 321 (1990)
Arriagada FJ, Osseo-Asare K, Colloids Surf., 69(2-3), 105 (1992)
Osseo-Asare K, Arriagada FJ, J. Colloid Interface Sci., 218(1), 68 (1999)
Arriagada FJ, Osseo-Asare K, J. Colloid Interface Sci., 211(2), 210 (1999)
Leong YS, Candau F, Pouyet G, Candau SJ, J. Colloid Interface Sci., 101(1), 167 (1984)
Caillet C, Hebrant M, Tondre C, Langmuir, 14(16), 4378 (1998)
Tojo C, Blanco MC, Lopez-Quintela MA, Langmuir, 14(24), 6835 (1998)
Bagwe RP, Khilar KC, Langmuir, 13(24), 6432 (1997)
Bagwe RP, Khilar KC, Langmuir, 16(3), 905 (2000)
Hou MJ, Shah DO, Langmuir, 3(6), 1086 (1987)
Bansal VK, Shah DO, O’Connell JP, J. Colloid Interface Sci., 75(2), 462 (1980)
Johnson K, Shah DO, J. Colloid Interface Sci., 107(1), 269 (1985)
Jung KY, Kim MC, Park SJ, Lee ES, Lee MC, Park SK, Lim JC, J. Korean Ind. Eng. Chem., 13(6), 551 (2002)
Kim TH, Kim JY, Kim MC, Park SJ, Park SK, Lim JC, HWAHAK KONGHAK, 41(2), 174 (2003)
Lim J, J. Korean Ind. Eng. Chem., 15(2), 216 (2004)
Nazario LMM, Crespo JPSG, Holzwarth JF, Hatton TA, Langmuir, 16(14), 5892 (2000)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로