Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 2, 2007
Accepted November 6, 2007
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고온 열순환 공정이 BCB와 PECVD 산화규소막 계면의 본딩 결합력에 미치는 영향에 대한 연구
A Study on the Effects of High Temperature Thermal Cycling on Bond Strength at the Interface between BCB and PECVD SiO2 Layers
인하공업전문대학 화공환경과, 402-752 인천시 남구 용현동 253 1중앙대학교 기계공학부, 156-756 서울시 동작구 흑석동 221 2포커스 센터-뉴욕 렌슬리어 렌슬리어 폴리테크닉 인스티튜트, 뉴욕주 12180 트로이시
Department of Chemical and Environmental Technology, Inha Technical College, 253 Yonghyun-dong, Nam-gu, Incheon 402-752, Korea 1School of Mechanical Engineering, College of Engineering, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 156-756, Korea 2Focus Center - New York, Rensselaer: Interconnections for Hyperintegration, Rensselaer Polytechnic Institute, Troy NY 12180-3590, USA
Korean Chemical Engineering Research, April 2008, 46(2), 389-396(8), NONE Epub 29 May 2008
Download PDF
Abstract
벤조시클로부텐(benzocyclobutene; BCB)과 플라즈마 화학기상증착(PECVD)된 산화규소막이 코팅된 웨이퍼들 사이의 계면에서, 고온 열순환 공정에 의한 잔류응력 및 본딩 결합력의 효과를 4점 굽힙시험법과 웨이퍼 곡률 측정법에 의해 평가하였다. 이를 위해 웨이퍼들은 사전에 확립된 표준 본딩공정에 의거하여 본딩하였으며 이들 웨이퍼에 대한 열순환 공정은 상온으로부터 최대 순환온도 사이에서 수행하였다. 최대 온도 350 및 400 ℃에서 수행한 열순환 공정에서, 본딩 결합력은 첫번째 순환공정 동안 크게 증가하는 데, 이는 순환공정 시 발생하는 산화규소막의 축합 반응에 의한 잔류응력 감소 때문인 것으로 분석되었다. 이러한 산화규소막의 잔류응력이 감소함에 따라 BCB와 산화규소막으로 구성된 다층막의 잔류응력에 의해 변형되는 에너지는 상승하였고 따라서 BCB와 산화규소막 사이 다층막의 의 본딩 결합력은 증가하였다.
The effect of thermal cycling on bond strength and residual stress at the interface between benzocyclobutene (BCB) and plasma enhanced chemical vapor deposited (PECVD) silicon dioxide (SiO2) coated silicon wafers were evaluated by four point bending and wafer curvature techniques. Wafers were bonded using a pre-established baseline process. Thermal cycling was done between room temperature and a maximum peak temperature. In thermal cycling performed with 350 and 400 ℃ peak temperature, the bond strength increased substantially during the first thermal cycle. The increase in bond strength is attributed to the relaxation in residual stress by the condensation reaction of the PECVD SiO2: this relaxation leads to increases in deformation energy due to residual stress and bond strength.
References
Davis JA, Venkatesan R, Kaloyeros A, Beylansky M, Souri SJ, Banerjee K, Saraswat KC, Rahman A, Reif R, Meindl JD, Proc. IEEE, 89(3), 305 (2001)
Kwon Y, Jindal A, McMahon JJ, Lu JQ, Gutmann RJ, Cale TS, Mater. Res. Soc. Symp. Proc., 766, 27 (2003)
Lu JQ, Kwon Y, Rajagopalan G, Gupta M, McMahon J, Lee KW, Kraft RP, Jindal A, McDonald JF, Cale TS, Gutmann RJ, Xu B, Eisenbraun E, Castracane J, Kaloyeros A, 2002 IEEE Int’l Interconnect Technol. Conf., 78 (2002)
Gutmann RJ, Lu JQ, Kraft RP, McDonald JF, Cale TS, 2001 IEEE on Polymers and Adhesives in Microelectronics and photonics, 173 (2001)
Sakamoto SR, Ozturk C, Byun YT, Ko J, Dagli N, IEEE Photon. Technol. Lett., 10(7), 985 (1998)
Niklaus F, Enoksson P, Griss P, Kalvesten E, Stemme G, J. Microelectromech. Syst., 10(4), 525 (2001)
Lingk C, Gross ME, Brown WL, J. Appl. Phys., 87(5), 2232 (2000)
Kim DH, Wentorf RH, Gill WN, J. Electrochem. Soc., 140(11), 3267 (1993)
Kwon Y, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY (2003)
Suo Z, Hutchinson JW, Acta. Metall. Mater., 43, 2507 (1995)
Sha Y, Hui CY, Kramer EJ, Hahn SF, Berglund CA, Macromolecules, 29(13), 4728 (1996)
Thurn J, Cook RF, J. Appl. Phys., 91(4), 1988 (2002)
Chen F, Li BZ, Sullivan TD, Gonzalez CL, Muzzy CD, Lee HK, Levy MD, Dashiell MW, Kolodzey J, J. Vac. Sci. Technol. B, 18(6), 2826 (2000)
Vandevelde B, Beyne E, IEEE Trans. Adv. Pack., 23(2), 239 (2000)
Garrou PE, Scheck D, Im JH, Hetzner J, Meyers G, Hawn D, Wu JL, Vincent MB, Wong CP, IEEE Trans. Adv. Pack., 23(3), 568 (2000)
Chyan O, Arunagiri TN, Ponnuswamy T, J. Electrochem. Soc., 150(5), c347 (2003)
Rye RR, Ricco AJ, J. Electrochem. Soc., 140(6), 1763 (1993)
Im JH, University of Texas, Austin, TX, private communication
Kwon Y, Seok J, Jpn. J. Appl. Phys., 44(6A), 6893 (2005)
Kwon Y, Seok J, Lu JQ, Cale T, Gutmann R, Korean Chem. Eng. Res., 45(5), 466 (2007)
Kwon Y, Seok J, Lu JQ, Cale T, Gutmann R, Korean Chem. Eng. Res., 45(5), 479 (2007)
Charalambides PG, Lund J, Evans AG, McMeeking RM, J. Appl. Mech., 56(1), 77 (1989)
Charalambides PG, Cao HC, Lund J, Evans AG, Mechanics of materials, 8(4), 269 (1990)
Stoney GG, Proc. R. Soc. London, Ser. A, 82, 172 (1909)
Garrou PE, Heistand RH, Dibbs MG, Mainal TA, Mohler CE, Stokich TM, Townsend PH, Adema GM, Berry MJ, Turlik I, IEEE Trans. Comp., Hybrids Manufact. Technol., 16(1), 46 (1993)
Morgan M, Zhao JH, Hay M, Cho T, Ho PS, Mater. Res. Soc. Symp. Proc., 565, 69 (2000)
Haque MS, Naseem HA, Brown WD, J. Electrochem. Soc., 144(9), 3265 (1997)
Kwon Y, Jindal A, McMahon JJ, Lu JQ, Gutmann RJ, Cale TS, Mater. Res. Soc. Symp. Proc., 766, 27 (2003)
Lu JQ, Kwon Y, Rajagopalan G, Gupta M, McMahon J, Lee KW, Kraft RP, Jindal A, McDonald JF, Cale TS, Gutmann RJ, Xu B, Eisenbraun E, Castracane J, Kaloyeros A, 2002 IEEE Int’l Interconnect Technol. Conf., 78 (2002)
Gutmann RJ, Lu JQ, Kraft RP, McDonald JF, Cale TS, 2001 IEEE on Polymers and Adhesives in Microelectronics and photonics, 173 (2001)
Sakamoto SR, Ozturk C, Byun YT, Ko J, Dagli N, IEEE Photon. Technol. Lett., 10(7), 985 (1998)
Niklaus F, Enoksson P, Griss P, Kalvesten E, Stemme G, J. Microelectromech. Syst., 10(4), 525 (2001)
Lingk C, Gross ME, Brown WL, J. Appl. Phys., 87(5), 2232 (2000)
Kim DH, Wentorf RH, Gill WN, J. Electrochem. Soc., 140(11), 3267 (1993)
Kwon Y, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY (2003)
Suo Z, Hutchinson JW, Acta. Metall. Mater., 43, 2507 (1995)
Sha Y, Hui CY, Kramer EJ, Hahn SF, Berglund CA, Macromolecules, 29(13), 4728 (1996)
Thurn J, Cook RF, J. Appl. Phys., 91(4), 1988 (2002)
Chen F, Li BZ, Sullivan TD, Gonzalez CL, Muzzy CD, Lee HK, Levy MD, Dashiell MW, Kolodzey J, J. Vac. Sci. Technol. B, 18(6), 2826 (2000)
Vandevelde B, Beyne E, IEEE Trans. Adv. Pack., 23(2), 239 (2000)
Garrou PE, Scheck D, Im JH, Hetzner J, Meyers G, Hawn D, Wu JL, Vincent MB, Wong CP, IEEE Trans. Adv. Pack., 23(3), 568 (2000)
Chyan O, Arunagiri TN, Ponnuswamy T, J. Electrochem. Soc., 150(5), c347 (2003)
Rye RR, Ricco AJ, J. Electrochem. Soc., 140(6), 1763 (1993)
Im JH, University of Texas, Austin, TX, private communication
Kwon Y, Seok J, Jpn. J. Appl. Phys., 44(6A), 6893 (2005)
Kwon Y, Seok J, Lu JQ, Cale T, Gutmann R, Korean Chem. Eng. Res., 45(5), 466 (2007)
Kwon Y, Seok J, Lu JQ, Cale T, Gutmann R, Korean Chem. Eng. Res., 45(5), 479 (2007)
Charalambides PG, Lund J, Evans AG, McMeeking RM, J. Appl. Mech., 56(1), 77 (1989)
Charalambides PG, Cao HC, Lund J, Evans AG, Mechanics of materials, 8(4), 269 (1990)
Stoney GG, Proc. R. Soc. London, Ser. A, 82, 172 (1909)
Garrou PE, Heistand RH, Dibbs MG, Mainal TA, Mohler CE, Stokich TM, Townsend PH, Adema GM, Berry MJ, Turlik I, IEEE Trans. Comp., Hybrids Manufact. Technol., 16(1), 46 (1993)
Morgan M, Zhao JH, Hay M, Cho T, Ho PS, Mater. Res. Soc. Symp. Proc., 565, 69 (2000)
Haque MS, Naseem HA, Brown WD, J. Electrochem. Soc., 144(9), 3265 (1997)