ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 14, 2008
Accepted March 19, 2008
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

나노다공성 알루미나 마스크의 제조 및 응용

Fabrication of Nanoporous Alumina Mask and its Applications

1서강대학교 화공생명공학과, 121-742 서울시 마포구 신수동 1 2서강대학교 바이오 융합기술연구단, 121-742 서울시 마포구 신수동 1 3한경대학교 화학공학과, 456-749 경기도 안성시 석정동 67
1Department of Chemical & Biomolecular Engineering, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul 121-742, Korea 2Interdisciplinary Program of Integrated Biotechnology, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul 121-742, Korea 3Department of Chemical Engineering, Hankyong National University, 67 Sukjong-dong, Ansung, Kyonggi-do 456-749, Korea
bkoh@sogang.ac.kr
Korean Chemical Engineering Research, June 2008, 46(3), 465-472(8), NONE Epub 7 July 2008
downloadDownload PDF

Abstract

나노재료의 합성이나 나노구조물질의 제작은 나노기술을 기반으로 하는 전자소자를 구현하기 위해서 많은 연구가 진행되고 있다. 나노다공성 알루미나 마스크(nanoporous alumina mask) 를 이용하여 균일도와 정렬도가 우수한 나노구조물들을 제조할 수 있고 이들의 크기와 밀도는 알루미나 마스크의 동공의 직경과 동공밀도를 조절하여 제어할 수 있다. 이러한 방법은 낮은 비용으로 나노구조물의 대면적 제조 공정 개발이 가능하고, 정보통신기술와 바이오기술-나노기술을 융합하는 새로운 물질의 제조에 응용할 수 있을 것이다. 그러므로, 알루미나 마스크를 사용하여 다양한 크기와 밀도를 갖는 나노물질을 제조하는 기술은 새로운 형태의 다양한 전자소자의 구현을 위해 가능성이 큰 기술이라 할것이다. 본 논문에서는 나노다공성 알루미나 마스크를 제조하는 기술과 이를 이용한 양자점(quantum dots), 나노홀(nanoholes), 나노막대(nanorods) 등의 나노구조물 제조와 그 구조물의 응용성에 대해 알아보고자 한다.
Fabrication of nanostructured materials and synthesis of nanomaterials have intensively studied to realize electronic devices for nanotechnology. By using nanoporous alumina mask, nanostructured material can be fabricated in the form of uniform array. The size and the density of the nanostructured materials can be controllable by changing the pore diameter and the density of the alumina mask. This method is possible low cost and on large scale process, and feasible to contribute the fusion technology consisting of information technology, nanotechnology, and biotechnology. Therefore, these techniques provide alternative approaches for development of new electronic applications. In this paper, the fabrication technique and its applications of nanoporous alumina mask are described and nanostructured materials such as quantum dots, nanoholes, and nanorods are introduced.

References

Lee IG, Kim K, Jeon SC, Kim JS, Lee HM, Int. J. Prec. Eng. Manufac., 7, 14 (2006)
Watson JA, Brown CL, Myhra S, Watson GS, Nanotechnology, 17, 2581 (2006)
Kim SH, Lee KD, Kim JY, Kwon MK, Park SJ, Nanotechnology, 18, 055306 (2007)
Lee SW, Sanedrin RG, Oh BK, Mirkin CA, Adv. Mater., 17(22), 2749 (2005)
Lee SW, Oh BK, Sanedrin RG, Salaita K, Fujigaya T, Mirkin CA, Adv. Mater., 18(9), 1133 (2006)
Haginoya C, Ishibashi M, Koike K, Appl. Phys. Lett., 71, 2934 (1997)
Jung M, Kim HG, Lee JK, Joo OS, Mho S, Electrochim. Acta, 50(2-3), 857 (2004)
Jeong SH, Hwang HT, Jeong Y, Lee KH, Appl. Phys. Lett., 78, 2052 (2001)
Masuda H, Yasui K, Nishio K, Adv. Mater., 12(14), 1031 (2000)
Xiao Z, Zhang L, Tian X, Fang X, Nanotechnology, 16, 2647 (2005)
Oh BK, Park S, Millstone JE, Lee SW, Lee KB, Mirkin CA, J. Am. Chem. Soc., 128(36), 11825 (2006)
Mei X, Kim D, Guo QX, Ruda HE, Appl. Phys. Lett., 81, 361 (2002)
Jung M, Park HL, Mho SI, Appl. Phys. Lett., 88, 133121 (2006)
Nakao M, Oku S, Tamamura T, Yasui K, Masuda H, Jpn. J. Appl. Phys., 38, 1052
Guo Q, Tanaka T, Nishio M, Ogawa H, Mei X, Ruda H, Jpn. J. Appl. Phys., 41, L118 (2002)
Jung M, Lee S, Jhon YM, Mho SI, Cho J, Woo D, Jpn. J. Appl. Phys., 46, 4410 (2007)
Keller F, Hunter MS, Robinson DL, J. Electrochem. Soc., 100, 411 (1953)
Li AP, Muller F, Briner A, Nielsch K, Gosele U, J. Appl. Phys., 84, 6023 (1998)
Masuda H, Fukuda K, Science, 268(5216), 1466 (1995)
Leobandung E, Guo L, Chou SY, Appl. Phys. Lett., 67, 2338 (1995)
Saito H, Nishi K, Ogura I, Sugou S, Sugimoto Y, Appl. Phys. Lett., 69, 3140 (1996)
Jaros M, Oxford University Press (1989)
Kahn IK, McGraw-Hill (1970)
Kim TW, Choo DC, Lee DU, Lee HS, Jang MS, Park HL, Appl. Phys. Lett., 81, 487 (2002)
Choi BH, Park CM, Song SH, Son MH, Hwang SW, Ahn D, Kim EK, Appl. Phys. Lett., 78, 1403 (2001)
Shingubara S, Okino O, Murakami Y, Sakaue H, Takahagi T, J. Vac. Sci. Technol. B, 19(5), 1901 (2001)
Crouse D, Lo YH, Miller AE, Crouse M, Appl. Phys. Lett., 76, 49 (2000)
Fujii T, Gao Y, Sharma R, Hu EL, DenBaars SP, Nakamura S, Appl. Phys. Lett., 84, 855 (2004)
Jung M, Lee S, Byun YT, Jhon YM, Kim SH, Woo DH, Mho SI, Microelectronics Journal, 39, 526 (2008)
Kim KJ, Choi JH, Bae TS, Jung M, Woo DH, Jpn. J. Appl. Phys., 46, 6682 (2007)
Wang X, Summers CJ, Wang ZL, Nano Lett., 4, 423 (2004)
Park WI, Kim JS, Yi GC, Lee HJ, Adv. Mater., 17(11), 1393 (2005)
Kim JS, Park WI, Lee CH, Yi GC, J. Korean Phys. Soc., 49, 1635 (2006)
Gooding JJ, Small, 2, 313 (2006)
Hayden O, Zheng G, Agarwal P, Lieber CM, Small, 3, 2048 (2007)
Yan H, Xu B, Small, 2, 310 (2006)
Huff TB, Hansen MN, Zhao Y, Cheng JX, Wei A, Langmuir, 23(4), 1596 (2007)
Gao Y, Wang ZL, Nano Lett., 7, 2499 (2007)
Park WI, Yi GC, Adv. Mater., 16(1), 87 (2004)
Nicewarner-Penna SR, Freeman GR, Reiss BD, He L, David J, Pena DJ, Walton ID, Cromer R, Keating CD, Natan MJ, Science, 294, 137 (2001)
Qin L, Park S, Huang L, Mirkin CA, Science, 309, 113 (2005)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로