Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 7, 2007
Accepted March 5, 2008
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
무기 및 유기 박막을 포함하는 웨이퍼 적층 구조의 본딩 결합력
Bond Strength of Wafer Stack Including Inorganic and Organic Thin Films
인하공업전문대학교 화공환경과, 402-752 인천시 남구 용현동 253 1중앙대학교 기계공학부, 156-756 서울시 동작구 흑석동 221
Department of Chemical and Environmental Technology, Inha Technical Collage, 253, Yonghyun-dong, Nam-gu, Incheon 402-752, Korea 1School of Mechanical Engineering, College of Engineering Chung-Ang University, 221, HeukSeok-Dong, Dongjak-Gu, Seoul 156-756, Korea
Korean Chemical Engineering Research, June 2008, 46(3), 619-625(7), NONE Epub 7 July 2008
Download PDF
Abstract
패시베이션 및 절연 목적으로 이용하는 플라즈마 화학기상증착(PECVD)법에 의해 증착된 무기막과 웨이퍼 간 본딩 접착제로 이용하는 유기 박막 적층면의, 열 순환에 의한 잔류 응력 및 본딩 결합력의 효과를 4점 굽힙 시험법과 웨이퍼 곡률 측정법에 의해 평가하였다. 무기막으로는 산화 규소막(SiO2)과 산화 질화막(SiNx)이, 유기 박막으로는 BCB(Benzocyclobutene)가 이용되었다. 이를 통해, 열 순환 동안 무기막과 유기막 사이에서의 잔류 응력과 본딩 결합력의 상관관계에 대한 모델식을 개발하였다. 최대 온도 350 및 400℃에서 수행한 열 순환 공정에서, PECVD 산화 질화막과 BCB로 구성된 다층막에서, 본딩 결합력은 첫 번째 순환 공정 동안 감소한다. 이는 산화질화막 내 잔류인장응력의 증가가 다층막의 잔류응력에 의해 변형되는 에너지 및 본딩 결합력의 감소를 유도한다는 모델식의 예측과 일치하며, PECVD 산화 규소막내 잔류 압축 응력의 감소가 다층막의 잔류응력에 의해 변형되는 에너지 및 본딩 결합력 상승을 이끄는 산화 규소막과 BCB 구조의 본딩 결합력 결과와 비교된다. 이러한 산화 규소막과 산화 질화막을 포함한 다층 막의 상반된 본딩 결합력은 증착 공정 후 막 내에 형성된 수소 결합이 고온 순환 공정 동안 축합 반응을 통해 더 밀집되어 인장응력을 형성하기 때문임을 알 수 있었다.
The effects of thermal cycling on residual stresses in both inorganic passivation/insulating layer that is deposited by plasma enhanced chemical vapor deposition (PECVD) and organic thin film that is used as a bonding adhesive are evaluated by 4 point bending method and wafer curvature method. SiO2/SiNx and BCB (Benzocyclobutene) are used as inorganic and organic layers, respectively. A model about the effect of thermal cycling on residual stress and bond strength (Strain energy release rate), Gc, at the interface between inorganic thin film and organic adhesive is developed. In thermal cycling experiments conducted between 25℃ and either 350℃ or 400℃, Gc at the interface between BCB and PECVD SiNx decreases after the first cycle. This trend in Gc agreed well with the prediction based on our model that the increase in residual tensile stress within the SiNx layer after thermal cycling leads to the decrease in Gc. This result is compared with that obtained for the interface between BCB and PECVD SiO2, where the relaxation in residual compressive stress within the SiO2 induces an increase in Gc. These opposite trends in Gcs of the structures including either PECVD SiNx or PECVD SiO2 are caused by reactions in the hydrogen-bonded chemical structure of the PECVD layers, followed by desorption of water.
Keywords
References
Fan A, Rahman R, Reif R, Electrochem. Solid State Lett., 2(10), 534 (2001)
Davis JA, Venkatesan R, Kaloyeros A, Beylansky M, Souri SJ, Banerjee K, Saraswat KC, Rahman A, Reif R, Meindl JD, Proc. IEEE, 89(3), 305 (2001)
Kwon Y, Jindal A, McMahon JJ, Lu JQ, Gutmann RJ, Cale TS, Mater. Res. Soc. Symp. Proc., 766, 27 (2003)
Lu JQ, Kwon Y, Rajagopalan G, Gupta M, McMahon J, Lee KW, Kraft RP, Jindal A, McDonald JF, Cale TS, Gutmann RJ, Xu B, Eisenbraun E, Castracane J, Kaloyeros A, 2002 IEEE Int’l Interconnect Technol. Conf., 78 (2002)
Kwon Y, Seok J, Lu JQ, Cale T, Gutmann R, Korean Chem. Eng. Res., 45(5), 466 (2007)
Kwon Y, Seok J, Jpn. J. Appl. Phys., 44(6A), 3893 (2005)
Zhang X, Chen KS, Ghossi R, Ayon AA, Spearing SM, Sens. Actuators A-Phys., 91, 379 (2001)
Thurn J, Cook RF, J. Appl. Phys., 91, 1988 (2002)
Hughey MP, Cook RF, Thin Solid Films, 460(1-2), 7 (2004)
Smith DL, Alimonda AS, Chen CC, Ready SE, Wacker B, J. Electrochem. Soc., 137, 614 (1990)
Karabacak T, Zhao YP, Wang GC, Lu TM, Phys. Rev. B, 66, 075329 (2002)
Stoney GG, Proc. R. Soc. London, Ser. A, 82, 172 (1909)
Charalambides PG, Lund J, Evans AG, McMeeking RM, J. Appl. Mech., 56(1), 77 (1989)
Kwon Y, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY (2003)
Sha Y, Hui CY, Kramer EJ, Hahn SF, Berglund CA, Macromolecules, 29(13), 4728 (1996)
Litteken CS, Stroband S, Dauskardt RH, Acta Mater., 53(7), 1955 (2005)
Kwon Y, Seok J, Lu JQ, Cale TS, Gutmann RJ, Korean Chem. Eng. Res., 46(2), 389 (2008)
Freund LB, Suresh S, Thin Film Materials . Stress, Defect Formation and Surface Evolution, (Cambridge University Press, Cambridge, 2003)
Perrin J, Broekhuizen T, Appl. Phys. Lett., 50(8), 433 (1987)
Smith DL, Thin-Film Deposition: Principles and Practice, (McGraw-Hill, New York, 1995)
Buss RJ, Ho P, Breiland WG, Coltrin ME, J. Appl. Phys., 63(8), 2808 (1988)
Davis JA, Venkatesan R, Kaloyeros A, Beylansky M, Souri SJ, Banerjee K, Saraswat KC, Rahman A, Reif R, Meindl JD, Proc. IEEE, 89(3), 305 (2001)
Kwon Y, Jindal A, McMahon JJ, Lu JQ, Gutmann RJ, Cale TS, Mater. Res. Soc. Symp. Proc., 766, 27 (2003)
Lu JQ, Kwon Y, Rajagopalan G, Gupta M, McMahon J, Lee KW, Kraft RP, Jindal A, McDonald JF, Cale TS, Gutmann RJ, Xu B, Eisenbraun E, Castracane J, Kaloyeros A, 2002 IEEE Int’l Interconnect Technol. Conf., 78 (2002)
Kwon Y, Seok J, Lu JQ, Cale T, Gutmann R, Korean Chem. Eng. Res., 45(5), 466 (2007)
Kwon Y, Seok J, Jpn. J. Appl. Phys., 44(6A), 3893 (2005)
Zhang X, Chen KS, Ghossi R, Ayon AA, Spearing SM, Sens. Actuators A-Phys., 91, 379 (2001)
Thurn J, Cook RF, J. Appl. Phys., 91, 1988 (2002)
Hughey MP, Cook RF, Thin Solid Films, 460(1-2), 7 (2004)
Smith DL, Alimonda AS, Chen CC, Ready SE, Wacker B, J. Electrochem. Soc., 137, 614 (1990)
Karabacak T, Zhao YP, Wang GC, Lu TM, Phys. Rev. B, 66, 075329 (2002)
Stoney GG, Proc. R. Soc. London, Ser. A, 82, 172 (1909)
Charalambides PG, Lund J, Evans AG, McMeeking RM, J. Appl. Mech., 56(1), 77 (1989)
Kwon Y, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY (2003)
Sha Y, Hui CY, Kramer EJ, Hahn SF, Berglund CA, Macromolecules, 29(13), 4728 (1996)
Litteken CS, Stroband S, Dauskardt RH, Acta Mater., 53(7), 1955 (2005)
Kwon Y, Seok J, Lu JQ, Cale TS, Gutmann RJ, Korean Chem. Eng. Res., 46(2), 389 (2008)
Freund LB, Suresh S, Thin Film Materials . Stress, Defect Formation and Surface Evolution, (Cambridge University Press, Cambridge, 2003)
Perrin J, Broekhuizen T, Appl. Phys. Lett., 50(8), 433 (1987)
Smith DL, Thin-Film Deposition: Principles and Practice, (McGraw-Hill, New York, 1995)
Buss RJ, Ho P, Breiland WG, Coltrin ME, J. Appl. Phys., 63(8), 2808 (1988)