ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 29, 2008
Accepted April 7, 2008
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

십자형 응집-UF 막분리 공정 적용시 전처리 응집조건에 따른 막오염 메카니즘 규명

The Evaluation of Fouling Mechanism on Cross Flow Precoagulation-UF Process

울산산업진흥TP 전략산업기획단, 683-804 울산시 북구 연암동 758-2 1부산광역시 상수도사업본부 수질연구소, 621-813 경남 김해시 상동면 매리 421-1
Ulsan Regional Innovation Agency, Ulsan Industry Promotion Techno Park, 758-2, Yeonamdong, Bukgu, Ulsan 683-804, Korea 1Busan Water Quality Institute, 421-1 Maeri, Sangdongmyun, Kimhae 621-813, Korea
cwjung@uria.or.kr
Korean Chemical Engineering Research, June 2008, 46(3), 639-645(7), NONE Epub 7 July 2008
downloadDownload PDF

Abstract

십자형 응집-한외여과 막분리 공정 운전시 응집조건에 따른 영향을 살펴보면 급속교반-UF 공정과 응집-침전-UF 공정에서 투과 flux의 변화는 크게 나타나지 않았으며 UF막의 막오염 억제 측면에서는 응집전처리공정으로서 1분간의 짧은 급속혼화만으로도 충분한 것으로 나타났다. 교반강도에 따른 투과 flux의 변화결과 교반강도에 따라 형성되는 floc의 크기가 거의 유사하게 형성되어 교반강도에 따른 영향은 나타나지 않았다. 응집제 주입량에 따른 투과 flux변화를 살펴보면 응집제 주입량이 증가함에 따라 유기물의 제거가 크게 일어나 유기물 부하의 감소와 floc의 크기가 증가함에 따라 다공성 케이크층의 형성에 따른 막저항의 감소로 인하여 투과 flux가 향상되었다. 막의 재질과 전처리 응집공정 적용에 따른 여과메카니즘 분석결과 막의 재질에 따라서는 친수성 재질의 막에 비하여 소수성 재질의 막의 경우 막의 공극속으로 입자의 침투가 발생하여 침적·흡착되는 현상과 막의 표면에서 형성되는 cake층에 의한 투과 flux 감소가 주원인이 되었으며 응집공정을 전처리공정으로 적용시 UF단독공정에 비하여 막오염 발생이 저감되었다.
The objectives of this research are to (1) observe changes in particle size distribution due to formation of microflocs during coagulation process (2) identify the membrane fouling potential on cross flow system (3) investigate the mechanism of membrane fouling. The rate of flux decline for the hydrophobic membrane was significantly greater than for the hydrophilic membrane, regardless of pretreatment conditions. The pretreatment of the raw water significantly reduced the fouling of the UF membrane. Also, the rate of flux decline for the hydrophobic membrane was considerably greater than for the hydrophilic membrane. Applying coagulation process before membrane filtration showed not only reducing membrane fouling, but also improving the removal of dissolved organic materials that might otherwise not be removed by the membrane. That is, during the mixing period, substantial changes in particle size distribution occurred under rapid and slow mixing condition due to the simultaneous formation of microflocs and NOM precipitates. Therefore, combined pretreatment using coagulation not only improved dissolved organics removal efficiency but also flux recovery efficiency.

References

Amirtharajah A, O'Melia CR, 4th ed, McGraw-Hill, New York, 269-365 (1990)
LeChevallier MW, Welch NJ, Smith DB, Appl. Environ. Microbiol., 62(7), 2201 (1996)
Drikas M, Morran JY, Pelekani C, Hepplewhite C, Bursill DB, Water Sci. Technol., 2(1), 71 (2002)
Laine JM, Hagstrom JP, Clark MM, Mallevialle J, J. AWWA., 81(11), 60 (1989)
Taylor JS, Mulford A, Duranceau SJ, Barrentt WM, J. AWWA., 81(11), 52 (1989)
Dykes GM, Conlon WJ, J. AWWA., 81(11), 43 (1989)
Conlon WJ, Hornburg CD, Waston BM, Kedfer CA, Desalination, 78, 157 (1990)
Jacangelo JG, Aieta EM, Carns KE, Cummings EW, Mallevialle J, J. AWWA., 87(11), 68 (1995)
AWWA Membrane Technology Research Committee, 1998 Committee Report; Membrane Process. AWWA. 90(6), 91-105 (1998)
Bian R, Watanabe Y, Tambo N, Ozawa G, Water Sci. Technol., 40(9), 121 (1999)
Fane AG, Fell CJD, Desalination, 62, 117 (1987)
Fu LF, Dempsey BA, J. Membr. Sci., 149(2), 221 (1998)
Jones KL, O'Melia CR, J. Membr. Sci., 193(2), 163 (2001)
Yuan W, Zydney AL, J. Membr. Sci., 157(1), 1 (1999)
Chang YJ, Choo KH, Benjamin MM, Reiber S, J. AWWA., 90(5), 90 (1998)
Thiruvenkatachari R, Shim WG, Lee JW, Moon H, Korean J. Chem. Eng., 22(2), 250 (2005)
Jang NY, Watanabe Y, Ozawa G, JWWA, 71(2), 1 (2002)
Jang NY, Watanabe Y, Minegishi S, Bian R, JWWA, 70(2), 1 (2001)
Jung CW, Son HJ, Shin HS, Sohn IS, Korean Chem. Eng. Res., 45(6), 669 (2007)
Shim HS, Jung CW, Son HJ, Sohn IS, Korean Chem. Eng. Res., 45(5), 500 (2007)
Hermia J, Trans. Inst. Chem. Eng., 60, 183 (1982)
Jonsson AS, Jonsson B, J. Membr. Sci., 56, 49 (1991)
Wakeman RJ, visualization of cake formation in crossflow microfiltration, Masters, Thesis, 1995, AIT (1994)
Turcaud LV, Wiesner MR, Bottero JY, J. Membr. Sci., 52, 173 (1990)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로