Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 4, 2008
Accepted May 7, 2008
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
이송식 아크 플라즈마를 이용한 MLCC용 니켈 나노분말의 합성
Preparation of Nickel Nanopowder using the Transferred Arc Plasma for MLCCs
인하대학교 화학공학과 플라즈마공정연구실, 402-751 인천시 남구 용현동 253 1대주전자재료(주) 나노재료사업부, 429-848 경기 시흥시 정왕동 1236-10 시화공단 1라 110
Department of Chemical Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751, Korea 1Nano Metals Division, Daejoo Electronic Materials Co., Ltd, 1236-10, Jeongwang-dong, Siheung-si, Kyunggi-do 429-848, Korea
dwpark@inha.ac.kr
Korean Chemical Engineering Research, August 2008, 46(4), 701-706(6), NONE Epub 10 September 2008
Download PDF
Abstract
이송식 아크 열플라즈마를 이용하여 벌크상태의 니켈을 증발시킨 후 급속한 냉각과정을 거쳐 니켈 나노입자를 합성하였다. 플라즈마에 의해 질소가 용이하게 해리되어 용융된 니켈속으로 용해되고 과포화된 질소원자는 질소 분자로 가스화반응을 하여 반응열을 발산하는데 그 반응열에 의해 다량의 니켈증기가 생성된다. 생성된 니켈증기는 희석가스와 냉각가스를 이용하여 나노 입자 크기의 니켈분말로 제조된다. 희석가스 유량이 증가할수록 입자크기는 감소하였으며 그 분포경향이 작은 크기에서 좁게 나타났다. 평균입자크기는 희석가스 유량이 250 l/min에서 202 nm로 분석되었으며 모든 입자는 250 nm 이하 크기에서 존재함을 확인하였다.
Nano-sized nickel powders were prepared by evaporating the bulk nickel metarial using transferred arc thermal plasma. Nitrogen gases are easily dissociated to atomic nitrogen in thermal plasma and they are quickly dissolved in molten nickel. Super-saturated atomic nitrogen in molten nickel is recombined to nitrogen gas because of the relatively low temperature of nickel surface. Generally, the recombine reaction of atomic nitrogen is exothermic, so bulk nickel is quickly evaporated to nickel vapor due to the thermal energy of recombine reaction. The particle size of nickel powder was controlled by N2 used as the diluting gas. It was observed that as the diluting gas flow rate was increase, the particle size was decreased and the particle size distribution was narrowed. The average particle size at 250 l/min of the diluting gas was 202 nm analyzed by means of the particle size analyzer (PSA).
References
Davis SC, Klabunde KJ, Chem. Rev., 82, 153 (1982)
Tseng WJ, Lin SY, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., A362, 160 (2006)
Oh SM, Park DW, J. Korean Ind. Eng. Chem., 16(3), 305 (2005)
Degen A, Macek J., Nanostruct. Mater., 12, 225 (1999)
Pollet M, Marinel S, Desgardin G, J. European Ceram. Soc., 24, 119 (2004)
Matteazzi P, Basset D, Miani E, Cair G, Nanostruct. Mater., 2, 217 (1993)
Lewis LN, Lewis N, J. Am. Chem. Soc., 108, 7228 (1986)
Hwa WJ, Lee SD, Lee YB, Park HC, Kim KH, Park SS, J. Korean Ind. Eng. Chem., 15(7), 715 (2004)
Terwiiliger CD, Chiang YM, Nanostruct. Mater., 4(6), 651 (1994)
Ying Z, Shengming J, Guanzhou Q, Min Y, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., B122, 222 (2005)
Lee JE, Oh SM, Park DW, Thin Solid Films, 457(1), 230 (2004)
Stopic S, Nedeljkovic J, Rakocevic Z, Uskokovic D, J. Mater. Res., 14, 3059 (1999)
Lee SH, Oh SM, Park DW, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., C27, 1286 (2006)
Oh SM, Park DW, Thermal Plasma Processing With Applications, Inha Univ. Publications, Korea (2004)
Um MH, Lee CT, Kumazawa H, J. Mater. Sci. Lett., 16, 344 (1997)
FactSage, software program, version 5.3.1, GTT-Technologies, Germany
Oh SM, Park DW, Thin Solid Films, 316(1-2), 189 (1998)
Holman JP, Thermodynamics, Tower Press (1980)
Silbey RJ, Albrty RA, Pysical Chemistry, John Wiley & Sons, Inc., New York, NY (2001)
Horikoshi G, Fundamentals of Vacuum Technology, University of Tokyo Press, Tokyo, 11-14 (1994)
KiJima K, Suzuki K, spring conference on ICPIG, July, Netherlands (2005)
Tseng WJ, Lin SY, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., A362, 160 (2006)
Oh SM, Park DW, J. Korean Ind. Eng. Chem., 16(3), 305 (2005)
Degen A, Macek J., Nanostruct. Mater., 12, 225 (1999)
Pollet M, Marinel S, Desgardin G, J. European Ceram. Soc., 24, 119 (2004)
Matteazzi P, Basset D, Miani E, Cair G, Nanostruct. Mater., 2, 217 (1993)
Lewis LN, Lewis N, J. Am. Chem. Soc., 108, 7228 (1986)
Hwa WJ, Lee SD, Lee YB, Park HC, Kim KH, Park SS, J. Korean Ind. Eng. Chem., 15(7), 715 (2004)
Terwiiliger CD, Chiang YM, Nanostruct. Mater., 4(6), 651 (1994)
Ying Z, Shengming J, Guanzhou Q, Min Y, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., B122, 222 (2005)
Lee JE, Oh SM, Park DW, Thin Solid Films, 457(1), 230 (2004)
Stopic S, Nedeljkovic J, Rakocevic Z, Uskokovic D, J. Mater. Res., 14, 3059 (1999)
Lee SH, Oh SM, Park DW, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., C27, 1286 (2006)
Oh SM, Park DW, Thermal Plasma Processing With Applications, Inha Univ. Publications, Korea (2004)
Um MH, Lee CT, Kumazawa H, J. Mater. Sci. Lett., 16, 344 (1997)
FactSage, software program, version 5.3.1, GTT-Technologies, Germany
Oh SM, Park DW, Thin Solid Films, 316(1-2), 189 (1998)
Holman JP, Thermodynamics, Tower Press (1980)
Silbey RJ, Albrty RA, Pysical Chemistry, John Wiley & Sons, Inc., New York, NY (2001)
Horikoshi G, Fundamentals of Vacuum Technology, University of Tokyo Press, Tokyo, 11-14 (1994)
KiJima K, Suzuki K, spring conference on ICPIG, July, Netherlands (2005)