Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 27, 2007
Accepted November 10, 2008
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고밀도 폴리에틸렌 공정의 Melt Index 모델예측제어에 관한 연구
Model Predictive Control of the Melt Index in High-Density Polyethylene(HDPE) Process
한양대학교 화학공학과, 133-791 서울시 성동구 행당동 17
Department of Chemical Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791, Korea
Korean Chemical Engineering Research, December 2008, 46(6), 1043-1051(9), NONE Epub 29 December 2008
Download PDF
Abstract
폴리올레핀 공정의 melt index(MI or MFI)는 제품의 품질을 결정짓는 가장 중요한 제어변수이다. MI는 실시간으로 측정하는 것이 어렵기 때문에 MI를 예측하여 상관관계를 나타내고자 하는 많은 방법들이 제안되었다. 본 연구에서는 시스템 인식기법을 바탕으로 MI 예측을 위한 새로운 1차의 동적 예측모델을 고안하였다. 이 모델의 예측성능은 등급 변경이 수반되는 고밀도 폴리에틸렌 공장의 실제 운전데이터에 근거한 모사로 검증하였으며 다른 예측방법들과의 비교로부터 본 연구에 의한 예측모델의 우수성을 확인하였다. 구성된 MI 동적 예측모델을 토대로 하는 모델예측제어방법의 적용을 통하여 각 단위공정별 MI를 계산하고 운전데이터와 비교하였다. 제어운전의 모사를 통하여 등급변경이 이루어지는 운전 동안의 전이시간과 불량제품 발생량이 현저한 감소를 보임을 확인하였다.
In polyolefin processes melt index (MI) is the most important controlled variable indicating product quality. Because of the difficulty in the on-line measurement of MI, a lot of MI estimation and correlation methods have been proposed. In this work a new dynamic MI estimation scheme is developed based on system identification techniques. The empirical MI estimation equation proposed in the present study is derived from the 1st-order dynamic models. Effectiveness of the present estimation scheme was illustrated by numerical simulations based on plant operation_x000D_
data including grade change operations in high density polyethylene (HDPE) processes. From the comparisons with other estimation methods it was found that the proposed estimation scheme showed better performance in MI predictions. Using the model predictive control method based on the present dynamic MI estimation model, MI values are estimated and compared with those of MI setpoints. From the numerical simulation of the proposed control system, it was found that significant reduction of transition time and the amount of off-spec during grade changes_x000D_
were achieved.
Keywords
References
McAuley KB, MacGregor JF, AIChE J., 37, 825 (1991)
McAuley KB, MacGregor JF, AIChE J., 39, 855 (1993)
Ogawa M, Ohshima M, Morinaga K, Watanabe F, J. Process Control, 9(1), 51 (1999)
Ohshima M, Tanigaki M, J. Process Control, 10(2-3), 135 (2000)
Oh SJ, Lee J, Park S, Ind. Eng. Chem. Res., 44(1), 8 (2005)
McAuley KB, MacGregor JF, AIChE J., 39, 855 (1993)
Ogawa M, Ohshima M, Morinaga K, Watanabe F, J. Process Control, 9(1), 51 (1999)
Ohshima M, Tanigaki M, J. Process Control, 10(2-3), 135 (2000)
Oh SJ, Lee J, Park S, Ind. Eng. Chem. Res., 44(1), 8 (2005)