ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 22, 2008
Accepted January 14, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Hybrid SNCR/SCR 탈질공정에서 SNCR의 관통노즐에 의한 NOx 저감 및 NH3 Slip 특성

Characteristics of NOx Reduction and NH3 Slip in SNCR Using Pipe Nozzle for the Application of Hybrid SNCR/SCR Process

한국에너지기술연구원, 305-343 대전시 유성구 장동 71-2
Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea
his1261@kier.re.kr
Korean Chemical Engineering Research, February 2009, 47(1), 111-118(8), NONE Epub 27 February 2009
downloadDownload PDF

Abstract

Hybrid SNCR/SCR 공정개발을 위해 1,000 Nm3/hr 용량의 실증 플랜트를 제작하였다. 1단계로 SNCR의 최적운전 조건을 규명하기위해 환원제의 당량비(NSR, 0.5~5.0), 반응온도(850~1,100 ℃), 노즐형태(벽노즐, 관통노즐), 노즐위치를 변수로 SNCR 실험하였다. 벽노즐은 NSR 2.5에서 87%까지 NOx 저감효율이 급증하고 이후 증가 폭이 둔화되었다. 관통노즐 상향분사와 비교해, 적용 가능한 반응온도 범위도 적었다. 관통노즐 상향은 NSR 1.5에서 77%까지 NOx 저감효율이 급증되는 현상을 보였다. 그러나 관통노즐 하향은 NOx 저감효과가 없을 뿐만 아니라 오히려 NOx 발생이 증가하였다. 관통노즐에서 환원제를 상향분사했을 때, NSR 0.5~1.5 범위에서 NOx 저감효율은 50~75%로 나타났고, 890~1,000 ℃ 범위의 반응온도변화에도 NOx 저감효율의 증감없이 일정한 효율을 보였다. Urea 5% 용액을 NSR 1.2_x000D_ 에서 관통노즐로 상향 분사했을 때 이며, 이때 200 ppm의 NOx가 약 60 ppm으로 저감되고, 미반응 NH3는 50~100 ppm이었다. 이 조건에서 SNCR 후단의 SCR에 추가적인 NH3 공급 없이도 90 % 이상의 NOx 저감효율이 기대된다.
A hybrid SNCR/SCR plant was designed and manufactured, and experimented on the SNCR process in the first step to investigate the optimum operation conditions of SNCR, with the equivalence ratio of the reducing agent(NSR, 0.5~5.0), reaction temperature(850~1,100 ℃), nozzle type(wall nozzle, pipe nozzle), and nozzle position as variables. In the case of wall nozzles, the NOx reduction efficiency rapidly increased to 87% at 2.5 NSR and slowed down after this._x000D_ Compared to the upward spray from the pipe nozzle, wall nozzles have narrower range of applicable reaction temperature. In the case of pipe nozzles, it rapidly increased to 77% at 1.5 NSR. But the pipe nozzle downward had no NOx reduction efficiency; on the contrary, NOx increased. When the reducing agent was sprayed upward from a pipe nozzle, the NOx reduction efficiency was 50~75% in the range of 0.5~1.5 NSR, and the NOx reduction efficiency was constant without fluctuations even in the change of reaction temperature from 890 to 1,000 ℃. When 5% urea solution was sprayed upward from the pipe nozzle, 200 ppm NOx decreased to approximately 60 ppm at 1.2 NSR, and the nonreacted NH3 was 50~100 ppm. In this condition, we expect over 90% NOx reduction efficiency without additional supply of NH3 to SCR at the back of SNCR.

References

Miller JA, Bowman CT, Prog. Energy Combust. Sci., 15, 287 (1989)
Long RQ, Yang RT, Appl. Catal. B: Environ., 24(1), 13 (2000)
Nova I, Acqua LD, Lietti L, Giamello E, Forzatti P, Appl. Catal. B: Environ., 35(1), 31 (2001)
Gullett BK, Groff PW, Lin ML, Chen JM, J. Air & Waste Manage. Assoc., 44, 1188 (1994)
Urbas J, John MB, Design, “Optimization and Economic Analysis of SNCRR/SCR Hydrid on a Utility Boiler in the Ozen Transport Region,” American/Japanese Flame Research Committees International Symposium(1998)
Wendt JOL, Linak WP, Groff PW, Srivastava RK, AIChE J., 47(11), 2603 (2001)
Miller CA, Srivastava RK, Prog. Energy Combust. Sci., 26, 131 (2000)
Keshavaraja AX, Flytzani-Stephanopoulos M, Applied Catalysis B: Environmental, 27, L1 (2000)
Ma AZ, Muhler M, Grunert W, Appl. Catal. B: Environ., 27(1), 37 (2000)
Di Monte R, Fornasiero P, Kaspar J, Rumori P, Gubitosa G, Graziani M, Appl. Catal. B: Environ., 24(3-4), 157 (2000)
Takahashi S, Yamashita I, Korematsu K, Addition, JSME International Journal, Series, 3, 377 (1990)
Jodal M, Nielsen C, “Pilot-Scale Experiments with Ammonia and Urea as Reaction in Selective Non-Catalystic Reduction of Nitric Oxide,” 23th Symposium (international) on Combustion, The Combustion Institute, 237-243(1990)
Caton JA, Narney JK, Cariappa C, Laster WR, Can. J. Chem. Eng., 73(3), 345 (1995)
Rota R, Antos D, Zanoelo EF, Morbidelli M, Chem. Eng. Sci., 57(1), 27 (2002)
Caton JA, Siebers DL, Combust. Sci. and Tech., 65, 277 (1989)
Miller JA, Browman CT, International Journal of Chemical Kinetics, 23, 289 (1991)
Saleeby EG, Lee HW, Chem. Eng. Sci., 49(12), 1879 (1994)
Ostberg M, Damjohansen K, Chem. Eng. Sci., 50(13), 2061 (1995)
Lee JB, Kim SD, J. Chem.Eng. Japan, 23, 620 (1996)
Park SY, Yoo KS, Lee JK, Park YK, Korean Chem. Eng. Res., 44(5), 540 (2006)
Choi SK, Choi SW, Korean Society of Environmental Engineers, 581 (2003)
Ryu HY, Kim MC, Jung HJ, Lee GW, Chung JD, Korean Society of Environmental Health, 31, 332 (2005)
Jun HK, Jung SY, Lee TJ, Ryu CK, Kim JC, Catal. Today, 87(1-4), 3 (2003)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로