Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 9, 2009
Accepted March 5, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
Dynamic DSC와 TGA를 이용한 NR/CR 고무블렌드의 가황시스템이 가교 및 열화반응에 미치는 영향 연구
A Study on Effects of Vulcanization Systems on Cross-linking and Degradation Reactions of NR/CR Blends Using Dynamic DSC and TGA
현대자동차 고분자재료연구팀, 445-706 경기도 화성시 장덕동 772-1 1KCW(주) 고무기술연구소, 704-170 대구시 달서구 갈산동 400-86 2계명대학교 화학공학과, 704-701 대구시 달서구 달구벌대로 2800
Polymeric Materials Research Team, Hyundai-Kia Motors R&D Center, 772-1 Jangdeok-dong, Hwaseong-si, Gyeonggi-do 445-706, Korea 1Division of Rubber Technology and Engineering, KCW Co, 400-86 Galsan-dong, Dalseo-Gu, Daegu 704-701, Korea 2Department of Chemical Engineering, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Korea
wahn@kmu.ac.kr
Korean Chemical Engineering Research, April 2009, 47(2), 169-173(5), NONE Epub 6 May 2009
Download PDF
Abstract
Dynamic DSC와 TGA를 이용하여 NR/CR 고무복합체의 가황시스템에 따른 가교화반응과 열화반응특성을 연구하였다. 주어진 샘플에 대하여 승온속도를 각각 달리하여 DSC 곡선을 얻었고, 가황반응이 끝난 같은 샘플을 이용하여 TGA에서도 같은 승온 속도의 실험으로 열분해 곡선을 얻은 다음, Kissinger의 해석 방법에 따라 가교 및 열화 반응의 활성화에너지를 구하고 서로 비교하였다. 실험에 사용된 NR/CR 고무복합재료는 대개 120~180 ℃와 350~450 ℃ 사이의 온도영역에서 각각 가교 반응과 열분해반응이 일어나는 것으로 관찰되었으며 Kissinger의 해석방법이 잘 적용될 수 있는 것으로 나타났다. 또한 DSC에 의한 생성 활성화에너지는 83.0±5.0 kJ/mol로서 TGA에 의한 분해 활성화에너지인 147.0±2.0 kJ/mol 보다 매우 낮은 값을 나타내었다. 이러한 사실로부터 가황제/가황촉진제의 조성비 변화는 반응기구의 변화에는 크게 영향을 미치지 않지만 생성반응 시에는 샘플내의 저분자 화합물들과 함께 촉매역할을 하여 활성화에너지를 낮추는 역할을 하게 되는 반면, 반응이 끝난 후에는 더 이상 촉매로서 작용하지 못하게 되며 이에 따라 열분해활성화에너지는 주쇄의 분해반응에 의해 상대적으로 더 높게 나타내게 되는 것으로 생각할 수 있었다.
Effects of variations sulfur/accelerator ratio on cross-linking and thermal degradation behavior of NR/CR rubber compounds were studied using both dynamic DSC and non-isothermal TGA. DSC thermograms of the given samples were obtained with several different heating rates, and after cross-liked in DSC, TGA thermograms with the same samples also obtained. Kissinger analysis was applied to assess the activation energies for the cross-linking and thermal decomposition_x000D_
processes. Results showed that the formation and thermal decomposition reaction of the samples occurred in the overall temperature range of 120~180 ℃ and 350~450 ℃, respectively, exhibiting that data could be well-fittable by Kissinger method. Furthermore, formation activation energy by DSC was estimated as 83.0±5.0 kJ/mol, which was much smaller than that of degradation by TGA, 147.0±2.0 kJ/mol. From these results, it was considered that, although variations of sulfur/accelerator ratio in the present experiments affected little on the formation mechanism and/or thermal degradation, they could play roles as the catalysts which lower the activation energy of formation. Because of stabilization after formation reaction, however, they have no more effects on the lowering the activation energy, showing higher values when decomposition, caused by main-chain scissions.
Keywords
References
Ding R, Leonov AI, J. Appl. Polym. Sci., 61(3), 455 (1996)
Ngolemasango EF, Bennett M, Clarke J, J. Appl. Polym. Sci., 102(4), 3732 (2006)
Bevilacqua EM, J. Polym. Sci., Part B: Polymer Letters, 4, 27 (1966)
Clough RL, Gillen KT, Polym. Degrad. Stab., 38, 47 (1992)
Kissinger HE, Analytical Chemistry, 29, 1702 (1957)
Ahn W, Elastomer, 42, 55 (2007)
Ozawa T, Bull. Chem. Soc. Japan, 38, 1881 (1965)
Flynn JH, Wall LA, J. Polym. Sci., Part B: Polym. Lett., 4, 323 (1966)
Sircar AK, Thermal Characterization of Polymer Materials (2nd Ed.), edited by Turi EA, Vol. 1, Ch. 5, Academic Press, N.Y., 887 (1997)
Vyazovkin S, “Handbook of Thermal Analysis and Calorimetry,” edited by Brown ME, Gallagher PK, Vol. 5, Ch.13, Elsevier, N.Y., 503 (2008)
Ngolemasango EF, Bennett M, Clarke J, J. Appl. Polym. Sci., 102(4), 3732 (2006)
Bevilacqua EM, J. Polym. Sci., Part B: Polymer Letters, 4, 27 (1966)
Clough RL, Gillen KT, Polym. Degrad. Stab., 38, 47 (1992)
Kissinger HE, Analytical Chemistry, 29, 1702 (1957)
Ahn W, Elastomer, 42, 55 (2007)
Ozawa T, Bull. Chem. Soc. Japan, 38, 1881 (1965)
Flynn JH, Wall LA, J. Polym. Sci., Part B: Polym. Lett., 4, 323 (1966)
Sircar AK, Thermal Characterization of Polymer Materials (2nd Ed.), edited by Turi EA, Vol. 1, Ch. 5, Academic Press, N.Y., 887 (1997)
Vyazovkin S, “Handbook of Thermal Analysis and Calorimetry,” edited by Brown ME, Gallagher PK, Vol. 5, Ch.13, Elsevier, N.Y., 503 (2008)