Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 9, 2009
Accepted March 5, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
입체 화상의 3차원 전산모사기 구현에 관한 연구
A Study on the 3-Dimensional Implementation of Computer-Aid Management of Stereo Images
광운대학교 공과대학 화학공학과, 139-701 서울시 노원구 월계동 447-1
Department of Chemical Engineering, Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701, Korea
Korean Chemical Engineering Research, April 2009, 47(2), 179-184(6), NONE Epub 6 May 2009
Download PDF
Abstract
최근 전산기술의 발전으로 난류를 비롯한 3차원의 복잡한 전달현상에 대한 전산유체역학(CFD) 해석의 실효성이 제고되고 있다. 본 연구에서는 초음파나 레이저를 이용한 방법보다 저렴하고, 간편하게 좌, 우 입체 화상으로 추출된 입체화상의 변위히스토그램을 이용하여 3차원 화상을 구현하기 위한 윈도우환경하의 모사기 CAMSI(Computer-Aided Management of Stereo Images)를 개발하였다. 본 프로그램에서는 영역기반 방법이 적용되었으며, 좌우 화상의 정합시 대응점을 결정하기 위하여 제곱차거리합계(SSD), 절대거리차합계(SAD), 평균상관계수(NCC)와 동일점세기(MPC)의 방법들이 각각 적용되었다. 구현된 프로그램은 다양한 윈도우 크기와 한계값에 대하여 우수한 해석능력을 보여주었다. 특히, 화상의 잡영이 적은 곳에서는 작은 윈도우 크기의 SSD가 좀더 정확성이 높은 것으로 나타났으며, 일반적으로는 NCC가, 그리고 잡영이 매우 심한 경우에는 MPC 또는 NCC가 SSD보다는 정확성이 높게 나타났다. 본 연구를 통해 구현된 CAMSI는 복잡한 물체의 구현 또는 그 주변에서 다양한 전달현상의 3차원 CFD 해석에 효과적으로 사용될 수 있을 것이다.
Recent evolution of computer technology enhances the effectiveness of CFD(Computational Fluid Dynamics) analysis for the 3-dimensional complex transport phenomena including turbulent flows. Cheaper and easier than laser and ultra-sonic methods, the windows simulator name by CAMSI(Computer-Aided Management of Stereo Images) has been developed in order to implement the 3-dimensional image using a disparity histogram extracted from left and right stereo images. In our program using the area-based method, the matching pixel finding methods consist of SSD(Sum of Squared Distance), SAD(Sum of Absolute Distance), NCC(Normalized Correlation Coefficient) and MPC(Matching Pixel Count). On performing the program, stereo images on different window sizes for various matching pixel finding methods are compared reasonably. When the image has a small noise, SSD on small window size is more effective. Whereas there is much noise, NCC or MPC is more effective than SSD. CAMSI from the present study will be much helpful to implement the complex objects and to analyze 3-dimensional CFD around them.
References
Chang TPK, Watson AT, Tatterson GB, Chemical Engineering Science, 40, 269 (1985)
Chang TPK, Watson AT, Tatterson GB, Chemical Engineering Science, 40, 277 (1985)
Dracos T, Three-dimensional Velocity and Vorticity Measuring and Image Analysis Techniques, Kluwer Academic Publishers, Dordrecht (1996)
Fryer J, Mitchel H, Chandler J, Applications of 3D Measurement from Images, Whittles Publishing, Dunbeath (2007)
Russ JC, Image Processing Handbook, 3rd Ed.,” CRC Press LLC, Boca Raton (1999)
Luhmann T, Robson S, Kyle S, Harley I, “Close Range Photogrammetry: Principles, Methods and Applications,”Whittles Publishing, Dunbeath (2006)
Barnard S, Fischler M, ACM Comput. Surverys, 14, 553 (1982)
Hannah MJ, “Computer Matching of Areas in Stereo Images,” Ph.D. Thesis, Stanford University (1974)
Ma Y, Soatto S, Kosecka J, Sastry SS, “An Invitation to 3-D Vision: From Images to Geometric Models,” Springer, New York (2006)
Pitas I, “Digital Image Processing Algorithms,” Prentice Hall, New Jersey (1993)
Sid-Ahmed MA, Image Processing Theory: Algorithms and Architectures, McGraw-Hill, New York (1995)
Lee JS, Computer Vision Graphics and Image Processing, 24, 255 (1983)
Gonzalez RC, Woods RE, Digital Image Processing,” Addison-Wesley, New York (1992)
Marr D, Hildreth E, Proc, R. Soc, London, b207, 187 (1980)
Wang YF, Cheng DI, J. Pattern Rec. Soc., 25 (1992)
Chang TPK, Watson AT, Tatterson GB, Chemical Engineering Science, 40, 277 (1985)
Dracos T, Three-dimensional Velocity and Vorticity Measuring and Image Analysis Techniques, Kluwer Academic Publishers, Dordrecht (1996)
Fryer J, Mitchel H, Chandler J, Applications of 3D Measurement from Images, Whittles Publishing, Dunbeath (2007)
Russ JC, Image Processing Handbook, 3rd Ed.,” CRC Press LLC, Boca Raton (1999)
Luhmann T, Robson S, Kyle S, Harley I, “Close Range Photogrammetry: Principles, Methods and Applications,”Whittles Publishing, Dunbeath (2006)
Barnard S, Fischler M, ACM Comput. Surverys, 14, 553 (1982)
Hannah MJ, “Computer Matching of Areas in Stereo Images,” Ph.D. Thesis, Stanford University (1974)
Ma Y, Soatto S, Kosecka J, Sastry SS, “An Invitation to 3-D Vision: From Images to Geometric Models,” Springer, New York (2006)
Pitas I, “Digital Image Processing Algorithms,” Prentice Hall, New Jersey (1993)
Sid-Ahmed MA, Image Processing Theory: Algorithms and Architectures, McGraw-Hill, New York (1995)
Lee JS, Computer Vision Graphics and Image Processing, 24, 255 (1983)
Gonzalez RC, Woods RE, Digital Image Processing,” Addison-Wesley, New York (1992)
Marr D, Hildreth E, Proc, R. Soc, London, b207, 187 (1980)
Wang YF, Cheng DI, J. Pattern Rec. Soc., 25 (1992)