Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 20, 2009
Accepted May 11, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
나노 실리카 및 실록산이 초소형 전자소재 접착제용 에폭시 복합재의 물성에 미치는 효과
Effects of Nano Silica and Siloxane on Properties of Epoxy Composites for Adhesion of Micro Electronic Device
광운대학교 화학공학과, 139-701 서울시 노원구 월계동 447-1
Department of Chemical Engineering, ., Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701, Korea
kdh@kw.ac.kr
Korean Chemical Engineering Research, June 2009, 47(3), 332-336(5), NONE Epub 29 June 2009
Download PDF
Abstract
초소형 전자소재 접착용 고분자 소재 접착제는 접착소재와 칩 또는 기판 간의 열팽창계수 차이에 의한 박리, 크래킹과 접착력 부족 등의 문제점이 발생된다. 이러한 결점의 보완을 위하여 무기입자 및 첨가물을 통해 접착제의 열팽창 계수를 낮추거나, 접착제의 유연성을 부여하는 방법 등이 사용되고 있다. 실록산/실리카/에폭시 나노복합재에서 실록산과 실리카의 첨가가 열적, 기계적 물성에 미치는 효과를 확인하기 위한 실험을 진행하였다. 3-glycidoxypropyltrimethoxysilane(GPTMS)로 처리하여 친수성의 나노실리카 입자를 소수성 입자로 변성시켜 고분자 매트릭스와의 상용성 문제를 해결하고자 하였다. 표면처리하지 않은 실리카인 Aerosil®200을 첨가한 AMS/Aerosil/에폭시 나노복합재의 유리전이온도는 125에서 118 ℃로 감소하였고, 모듈러스는 2,225에서 2,523 MPa까지 증가하였다. 표면처리한 M-silica를 첨가한 AMS/M-silica/에폭시 나노복합재 또한 비슷한 경향이었으며, 유리전이온도가 124에서 120 ℃로 감소했고 모듈러스는 1,981에서 2,743 MPa까지 증가하였다. 실리카의 표면개질 유무에 상관없이 열팽창계수는 감소하는 추세를 보였다.
When NCAs(non-conductive adhesives) are used for adhesion of micro-electronic devices, they often show problems such as delamination and cracking, due to the differences of CTE(coefficients of thermal expansion) between NCAs and substrates. Additions of inorganic particles or flexibilizers have been performed to solve those problems. The effects of silica addition on thermal/mechanical properties of amino modified siloxane(AMS)/silica/epoxy-nanocomposites were examined. The silica was treated by 3-glycidoxypropyltrimethoxysilane(GPTMS) for better compatibility between silica and epoxy matrix. AMS/silica/epoxy-nanocomposites filled with various amounts of AMS(1 and 3 phr) and various amounts of silica(3, 5 and 7 phr) were prepared. And Tg, moduli and CTE of nanocomposites were analyzed. Tg of_x000D_
AMS/Aerosil(non-modified silica)/epoxy-nanocomposites decreased from 125 to 118 ℃ with increasing Aerosil contents and moduli increased from 2,225 to 2,523 MPa with increasing Aerosil contents. Tg of AMS/M-silica (modified silica)/epoxy-nanocomposites decreased from 124 to 120 ℃ with increasing M-silica contents and moduli increased from 1,981 to 2,743 MPa with increasing M-silica contents. CTE of AMS/Aerosil/epoxy-nanocomposites and AMS/M-silica/_x000D_
epoxy-nanocomposites showed decreasing tendency regardless of the surface treatments.
Keywords
References
Lee JW, Yoo JY, 2006 TCI Report, 1-60 (2006)
Kim JM, Journal of KWJS, 25, 133 (2007)
Matejka L, Dukh O, Kolarik J, Polymer, 41(4), 1449 (2000)
Haas KH, Wolter H, Curr. Opin. Solid St. M., 4, 571 (1999)
Salahuddin N, Moet A, Hiltner A, Baer E, Eur. Polym. J., 38, 1477 (2002)
Matejka L, Dusek K, Kriz J, Lednicky F, Polymer, 40, 171 (1998)
Min BK, Polym.(Korea), 12(7), 599 (1988)
Li Y, Wong CP, Materials Science and Engineering R: Reports, 51, 1 (2006)
Yim MJ, Paik KW, Electronic Materials Letters, 2, 7 (2006)
Yim MJ, Paik KW, Ceramist, 8, 23 (2005)
Jang KW, Kwon WS, Yim MJ, Paik KW, J. of the Microelectronics & Packaging Society, 10, 9 (2003)
Paik KW, Yim MJ, J. of the Microelectronics & Packaging Society, 7, 41 (2000)
Yim MJ, Paik KW, Korean Journal of Materials Research, 10, 184 (2000)
Kim LJ, Yoon HG, Lee SS, Kim Jk, Polym.(Korea), 28(5), 391 (2004)
Liu YL, Hsu CY, Wei WL, Jeng RJ, Polymer, 44(18), 5159 (2003)
Park SJ, Kim JS, J. Colloid Interface Sci., 232(2), 311 (2000)
Petrovic ZS, Javni I, Waddon A, Banhegyi G, J. Appl. Polym. Sci., 76(2), 133 (2000)
Benli S, Yilmazer U, Pekel F, Ozkar S, J. Appl. Polym. Sci., 68(7), 1057 (1998)
Nunes RCR, Pereira RA, Fonseca JLC, Pereira MR, Polym. Testing, 19, 93 (2000)
Petrie EM, The McGraw-Hill Companys Inc., New York (2006)
Kim JM, Journal of KWJS, 25, 133 (2007)
Matejka L, Dukh O, Kolarik J, Polymer, 41(4), 1449 (2000)
Haas KH, Wolter H, Curr. Opin. Solid St. M., 4, 571 (1999)
Salahuddin N, Moet A, Hiltner A, Baer E, Eur. Polym. J., 38, 1477 (2002)
Matejka L, Dusek K, Kriz J, Lednicky F, Polymer, 40, 171 (1998)
Min BK, Polym.(Korea), 12(7), 599 (1988)
Li Y, Wong CP, Materials Science and Engineering R: Reports, 51, 1 (2006)
Yim MJ, Paik KW, Electronic Materials Letters, 2, 7 (2006)
Yim MJ, Paik KW, Ceramist, 8, 23 (2005)
Jang KW, Kwon WS, Yim MJ, Paik KW, J. of the Microelectronics & Packaging Society, 10, 9 (2003)
Paik KW, Yim MJ, J. of the Microelectronics & Packaging Society, 7, 41 (2000)
Yim MJ, Paik KW, Korean Journal of Materials Research, 10, 184 (2000)
Kim LJ, Yoon HG, Lee SS, Kim Jk, Polym.(Korea), 28(5), 391 (2004)
Liu YL, Hsu CY, Wei WL, Jeng RJ, Polymer, 44(18), 5159 (2003)
Park SJ, Kim JS, J. Colloid Interface Sci., 232(2), 311 (2000)
Petrovic ZS, Javni I, Waddon A, Banhegyi G, J. Appl. Polym. Sci., 76(2), 133 (2000)
Benli S, Yilmazer U, Pekel F, Ozkar S, J. Appl. Polym. Sci., 68(7), 1057 (1998)
Nunes RCR, Pereira RA, Fonseca JLC, Pereira MR, Polym. Testing, 19, 93 (2000)
Petrie EM, The McGraw-Hill Companys Inc., New York (2006)