Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 2, 2009
Accepted April 28, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
직접 개미산 연료전지의 구성요소 평가에 대한 연구
Evaluation of Cell Components in Direct Formic Acid Fuel Cells
한국과학기술연구원 연료전지 연구단, 136-791 서울시 성북구 하월곡동 39-1
Center for Fuel Cell Research, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Korea
jhan@kist.re.kr
Korean Chemical Engineering Research, June 2009, 47(3), 362-367(6), NONE Epub 29 June 2009
Download PDF
Abstract
최근 직접 액체 연료전지의 연료로써의 개미산은 메탄올의 대안으로 부상하고 있다. 본 논문에서는 직접 개미산 연료전지(DFAFCs, Direct Formic Acid Fuel Cells)의 운전 조건을 변화시켜 성능을 측정 및 분석하였다. 예를 들면, 양이온 교환 막의 두께, 개미산 수용액의 농도, 기체 확산층과 상용 촉매 등을 비교 및 분석하였다. 양이온 교환 막의 두께는 크로스오버(cross-over)와 연관되어 성능에 영향을 크게 주었다. 성능 최적화를 위해 개미산의 농도를 변화시켰다.또한 개미산 산화에 가장 활성이 높은 상용촉매를 찾기 위해 실험했다. 나피온(Nafion®)-115, Pt-Ru black 상용촉매로 막-전극 접합체를 구성하여 6 M 개미산 수용액으로 운전하였을 때 최적의 성능을 보였다. 직접 메탄올 연료전지(DMFCs, Direct Methanol Fuel Cells)와 비교하여 우수한 성능을 보였다.
Recently, the use of formic acid as a fuel for direct liquid fuel cells has emerged as a promising alternative to methanol. In the work presented herein, we evaluated direct formic acid fuel cells(DFAFCs) with various components under operating conditions, for example, the thickness of the proton exchange membrane, concentration of formic acid, gas diffusion layer, and commercial catalyst. The thickness of the proton exchange membrane influenced performance related_x000D_
to the fuel cross-over. To optimize the cell performance, we investigated on the proper concentration of formic acid and catalyst for the formic acid oxidation. Consequently, membrance-electrode assembly(MEA) consisted of Nafion®-115 and the Pt-Ru black as a anode catalyst showed the maximum performance. This performance was superior to the DMFCs’ one.
References
Qian WM, Wilkinson DP, Shen J, Wang HJ, Zhang JJ, J. Power Sources, 154(1), 202 (2006)
Rhee YW, Ha SY, Masel RI, J. Power Sources, 117(1-2), 35 (2003)
Sauer F, Beck J, Schuster G, Moortgat GK, Chemosphere: Global Change Sci., 3, 309 (2001)
Winter AL, Fychan R, Jones R, Grass Forage Sci., 56, 151 (2001)
US Code of Federal Regulations, 21 CFR 186.1316.
US Code of Federal Regulations, 21 CFR 172.515.
Giorgi L, Antolini E, Pozio A, Passalacqua E, Electrochim. Acta, 43(24), 3675 (1998)
Antolini E, Pozio A, Giorgi L, Passalacqua E, J. Mater. Sci., 33(7), 1837 (1998)
Ha S, Dunbar Z, Masel RI, J. Power Sources, In Press (2005)
Larsen R, Ha S, Zakzeski J, Masel RI, J. Power Sources, 157(1), 78 (2006)
Ha S, Larsen R, Masel RI, J. Power Sources, 144(1), 28 (2005)
Rhee YW, Ha SY, Masel RI, J. Power Sources, 117(1-2), 35 (2003)
Sauer F, Beck J, Schuster G, Moortgat GK, Chemosphere: Global Change Sci., 3, 309 (2001)
Winter AL, Fychan R, Jones R, Grass Forage Sci., 56, 151 (2001)
US Code of Federal Regulations, 21 CFR 186.1316.
US Code of Federal Regulations, 21 CFR 172.515.
Giorgi L, Antolini E, Pozio A, Passalacqua E, Electrochim. Acta, 43(24), 3675 (1998)
Antolini E, Pozio A, Giorgi L, Passalacqua E, J. Mater. Sci., 33(7), 1837 (1998)
Ha S, Dunbar Z, Masel RI, J. Power Sources, In Press (2005)
Larsen R, Ha S, Zakzeski J, Masel RI, J. Power Sources, 157(1), 78 (2006)
Ha S, Larsen R, Masel RI, J. Power Sources, 144(1), 28 (2005)