Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 5, 2009
Accepted March 20, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
세슘카보네이트에서 이산화탄소의 수착반응
Sorption Analysis of Carbon Dioxide onto Cesium Carbonate
부산대학교 화학공학과, 609-735 부산시 금정구 장전동 산 30 1부산가톨릭대학교 환경행정학과, 609-757 부산시 금정구 부곡 3동 9번지
Division of Chemical Engineering, Pusan National University, San 30 Jangjun-dong, Gumjung-gu, Busan 609-735, Korea 1Department of Environmental Administration, Catholic University of Pusan, 9, Bugok 3-dong, Gumjung-gu, Busan 609-757, Korea
sskim@cup.ac.kr
Korean Chemical Engineering Research, June 2009, 47(3), 373-379(7), NONE Epub 29 June 2009
Download PDF
Abstract
고정층 반응기에서 cesium carbonate 흡착제를 사용하여 이산화탄소(CO2), 질소 및 수분의 혼합기체로부터 CO2를 수착하여 CO2-cesium carbonate의 반응속도론을 구하기 위하여 CO2의 파과곡선을 측정하였다. 비촉매 불균일반응계에서 반응속도론을 해석하기 위하여 CO2의 파과곡선을 사용하여 비활성화 모델로부터 반응속도론을 구하고 CO2의 파과곡선의 비선형해석으로부터 비활성화 모델에서 수착속도상수와 비활성속도상수를 구하였다.
Cesium carbonate was used as an adsorbent to capture carbon dioxide from gaseous stream of carbon dioxide, nitrogen, and moisture in a fixed-bed to obtain the breakthrough data of CO2. The deactivation model in the non-catalytic heterogeneous reaction systems is used to analyze the sorption kinetics among carbon dioxide, carbonate, and moisture using the experimental breakthrough data. The experimental breakthrough data are fitted very well to the deactivation_x000D_
model than the adsorption isotherm models in the literature.
References
Aresta M, Carbon Dioxide Recovery and Utilization, Kluwer Academic Pub., Boston (2003)
Fuchs W, Syosett NT, “Method of Removing Carbon Dioxide and Water from Air,” U. S. Patent, 3,511,595 (1970)
Gidaspow D, Onischak M, “Process for Regenerative Sorption of CO2,” U. S. Patent, 3,865,924 (1975)
Hirano S, Shigomoto N, Yamada S, Hayashi H, Bull. Chem. Soc., Jpn., 68, 1030 (1995)
Hayashi H, Taniuchi J, Furuyashiki N, Sugiyama S, Hirano S, Shigemoto N, Nonaka T, Ind. Eng. Chem. Res., 37(1), 185 (1998)
Shigemoto N, Yanagihara T, Sugiyama S, Hayashi H, J. Chem. Eng. Jpn., 38(9), 711 (2005)
Okunev AG, Sharnov VE, Aristov YI, Parmon VN, React. Kinet. Catal. Lett., 71, 355 (2004)
Ball MC, Strachan AN, Strachan RM, J. Chem. Faraday Trans., 87, 1911 (1991)
Ball MC, Clarke RA, Strachan AN, J. Chem. Faraday Trans., 87, 3683 (1991)
Ball MC, Snelling CM, Strachan AN, Strachan RM, J. Chem. Faraday Trans., 88, 631 (1992)
Park SW, Sung DH, Choi BS, Lee JW, Kumazawa H, J. Ind. Eng. Chem., 12(4), 522 (2006)
Park SW, Choi BS, Lee JW, Sep. Sci. Technol., 42(10), 2221 (2007)
Hoffman JS, Pennline HW, J. Energy & Environ. Res., 1, 90 (2001)
Green DA, Turk BS, Gupta RP, McMichael WJ, Harrison DP, Liang Y, Quarterly Technical Progress Report, Louisiana State University (2003)
Doraiswamy LK, Sharma MM, Heterogeneous Reactions, vol.1, John Wiley & Sons, Inc., New York (1984)
Ishida M, Wen CY, AIChE J., 14, 311 (1968)
Ramachandran PA, Kulkarni BD, Ind. Eng. Chem. Res. Process Design Develop., 19, 717 (1980)
Evans JW, Song S, Ind. Eng. Chem. Process Des. Develop., 13, 146 (1974)
Sampath BS, Ramachandran PA, Hughes R, Chem. Eng. Sci., 30, 135 (1975)
Ranade MG, Evans JW, Ind. Eng. Chem. Process Des. Develop., 19, 118 (1980)
Ruthven DM, Principles of Adsorption and Adsorption Processes, John & Wiley, NewYork (1984)
Suzuki M, Adsorption Engineering, Kodansga Ltd., Tokyo (1990)
Orbey N, Dogu G, Dogu T, Can. J. Chem. Eng., 60, 314 (1982)
Yasyerli N, Dogu T, Dogu G, Ar I, Chem. Eng. Sci., 51(11), 2523 (1996)
Fuchs W, Syosett NT, “Method of Removing Carbon Dioxide and Water from Air,” U. S. Patent, 3,511,595 (1970)
Gidaspow D, Onischak M, “Process for Regenerative Sorption of CO2,” U. S. Patent, 3,865,924 (1975)
Hirano S, Shigomoto N, Yamada S, Hayashi H, Bull. Chem. Soc., Jpn., 68, 1030 (1995)
Hayashi H, Taniuchi J, Furuyashiki N, Sugiyama S, Hirano S, Shigemoto N, Nonaka T, Ind. Eng. Chem. Res., 37(1), 185 (1998)
Shigemoto N, Yanagihara T, Sugiyama S, Hayashi H, J. Chem. Eng. Jpn., 38(9), 711 (2005)
Okunev AG, Sharnov VE, Aristov YI, Parmon VN, React. Kinet. Catal. Lett., 71, 355 (2004)
Ball MC, Strachan AN, Strachan RM, J. Chem. Faraday Trans., 87, 1911 (1991)
Ball MC, Clarke RA, Strachan AN, J. Chem. Faraday Trans., 87, 3683 (1991)
Ball MC, Snelling CM, Strachan AN, Strachan RM, J. Chem. Faraday Trans., 88, 631 (1992)
Park SW, Sung DH, Choi BS, Lee JW, Kumazawa H, J. Ind. Eng. Chem., 12(4), 522 (2006)
Park SW, Choi BS, Lee JW, Sep. Sci. Technol., 42(10), 2221 (2007)
Hoffman JS, Pennline HW, J. Energy & Environ. Res., 1, 90 (2001)
Green DA, Turk BS, Gupta RP, McMichael WJ, Harrison DP, Liang Y, Quarterly Technical Progress Report, Louisiana State University (2003)
Doraiswamy LK, Sharma MM, Heterogeneous Reactions, vol.1, John Wiley & Sons, Inc., New York (1984)
Ishida M, Wen CY, AIChE J., 14, 311 (1968)
Ramachandran PA, Kulkarni BD, Ind. Eng. Chem. Res. Process Design Develop., 19, 717 (1980)
Evans JW, Song S, Ind. Eng. Chem. Process Des. Develop., 13, 146 (1974)
Sampath BS, Ramachandran PA, Hughes R, Chem. Eng. Sci., 30, 135 (1975)
Ranade MG, Evans JW, Ind. Eng. Chem. Process Des. Develop., 19, 118 (1980)
Ruthven DM, Principles of Adsorption and Adsorption Processes, John & Wiley, NewYork (1984)
Suzuki M, Adsorption Engineering, Kodansga Ltd., Tokyo (1990)
Orbey N, Dogu G, Dogu T, Can. J. Chem. Eng., 60, 314 (1982)
Yasyerli N, Dogu T, Dogu G, Ar I, Chem. Eng. Sci., 51(11), 2523 (1996)