ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 9, 2009
Accepted June 23, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

Dimethyl Ether(DME) 합성을 위한 파일럿 규모의 고정층 반응기의 모델링과 모사를 통한 향류 냉각방식과 포화액체 풀비등 방식의 비교

Comparison of Counter-Current Cooling and Pool Boiling System Through Modeling and Simulation of a Pilot-Scale Fixed bed Reactor for Dimethyl Ether(DME) Synthesis

서울대학교 화학생물공학부, 151-742 서울시 관악구 신림동 산 56-1 1광운대학교 화학공학과, 139-701 서울시 노원구 월계동 447-1
School of Chemical Engineering, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-742, Korea 1Department of Chemical and Biological Engineering, Kwangwoon National Univesity, 447-1 Wolgye-dong, Nowon-gu, Seoul 139-701, Korea
Korean Chemical Engineering Research, August 2009, 47(4), 446-452(7), NONE Epub 25 August 2009
downloadDownload PDF

Abstract

최근 청정대체에너지로 각광을 받고 있는 dimethyl ether(DME)를 천연가스를 이용하여 직접 생산하는 1단계법의 고정층 촉매 반응기를 모사하였다. 1단계법의 고정층 반응기의 경우, 발열 반응인 메탄올 합성반응과 메탄올 탈수 반응이 동시에 일어나기 때문에 촉매의 비활성화를 일으킬 수 있는 hot spot의 발생을 막는 것이 가장 중요하다. 따라서 향후 상용공정에 적용 가능한 향류 냉각방식(count-current cooling system)과 포화액체 풀비등 방식(pool boiling system)을 적용하여 반응기 거동을 모사하고 이를 비교하였다. CO 전환율과 DME 생산성 면에서 향류 냉각방식이 더 효과적이었다. 하지만 포화비등액체 풀비등 방식이 더 작은 온도 범위에서 운전되어 hot spot(국소 고온점)의 가능성을 낮추고 더 안정적인 반응기 운전범위를 확보할 수 있었다.
The behavior of a one-step fixed bed reactor which directly synthesizes dimethyl ether(DME) from Natural Gas was simulated. In the reactor, the prevention of the occurrence of hot spots which can cause deactivation of catalysts is pivotal, since methanol synthesis and dehydration reaction involved in the synthesis of DME are highly exothermic. Therefore, we simulated and compared performance of the reactor with counter-current cooling and pool boiling system that can be applied to a commercial plant. As a result, we found that counter-current cooling system is more effective in terms of CO conversion and DME productivity. However, pool boiling system can operate in a small temperature gradient that can decrease problems caused by hot spot. And, the system can operate in a safer range.

References

Semelsberger TA, Borup RL, Greene HL, J. Power Sources, 156(2), 497 (2006)
Perry RH, Green DW, Perry’s Chemical Engineering Handbook, McGrawHill, New York (1997)
Ng KL, Chadwick D, Toseland BA, Chem. Eng. Sci., 54(15-16), 3587 (1999)
Kunii D, Levenspiel O, Fluidization Engineering, Butterworth-Heinemann, Boston (1990)
Welty JR, Wicks CE, Wilson RE, Fundamentals of momentum, heat and mass transfer, Wiley, New York (1976)
Cengel., Heat transfer a practical approach, McGrawHill, Boston (1998)
Satterfield CN, Mass Transfer in Heterogeneous Catalysis, M.I.T. Press, Cambridge Mass (1970)
Riggs JM, An introduction to numerical methods for chemical engineers, Texas Tech University Press, Lubbock (1994)
McCabe WL, Smith JC, Harriott P, Unit Operations of Chemical Engineering, McGrawHill, New York (1995)
Poling BE, Prausnitz JM, O’Connell JP, The Properties of Gases & Liquids, McGrawHill, New York (2001)
Song D, Cho W, Lee G, Park DK, Yoon ES, Ind. Eng. Chem. Res., 47, 4553 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로