ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 3, 2009
Accepted July 6, 2009
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

초임계 이산화탄소를 이용한 pH 감응성 하이드로젤 입자의 합성

Synthesis of pH-Sensitive Hydrogel Nanoparticles in Supercritical Carbon Dioxide

홍익대학교 화학공학과, 121-791 서울시 마포구 상수동 72-1 1네비온(주), 462-714 경기도 성남시 중원구 상대원동 223-12 2한양대학교 화학공학과, 133-791 서울시 성동구 행당동 17
Department of Chemical Engineering, Hongik University, 72-1 Sangsu-dong, Mapo-gu, Seoul 121-791, Korea 1Nabion Co., Ltd, 223-12 Sangdaewon-dong, Seongnam-si, Gyeonggi 462-714, Korea 2Department of Chemical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
bskim@hongik.ac.kr
Korean Chemical Engineering Research, August 2009, 47(4), 453-458(6), NONE Epub 25 August 2009
downloadDownload PDF

Abstract

최근 환경문제가 크게 대두됨에 따라 고분자 합성과 가공 공정에서도 유기용매를 사용하지 않는 새로운 친환경적 공정의 개발이 요구되고 있다. 초임계 이산화탄소는 고분자 합성에서 용매로 사용될 경우, 기존의 유기용매와 비교하여 불연성이고 독성이 없으며 생성물과의 분리가 용이하다는 장점을 가지고 있다. 본 연구에서는 초임계 이산화탄소를 이용하여 의약학 및 화장품 분야에서 지능형 약물전달체로 사용할 수 있는 pH 감응형 하이드로젤인 P(MAA-co-EGMA) 하이드로젤을 수 백 nm 수준의 입자 형태로 합성하는 방법을 개발하였다. 그리고 중합과정에서 사용하는 분산안정제인 PtBuMA-PEO와 중합개시제인 AIBN이 하이드로젤 입자의 합성에 미치는 영향을 살펴보았다. 입자의 합성에서 PtBuMA-PEO의 함량이 증가할수록 입자 크기는 감소하였으나 AIBN의 함량에 따른 입자 크기의 변화는 관찰할 수 없었다. 합성된 P(MAA-co-EGMA) 하이드로젤 입자의 pH에 따른 팽윤 실험결과, PMAA의 pKa인 pH 5를 전후하여 급격한 하이드로젤의 평형 질량팽윤비의 변화를 관찰할 수 있었다. 즉, pH 5보다 낮은 pH에서는 낮은 팽윤비를, 반면에 pH 5보다 높은 pH에서는 매우 높은 팽윤비를 나타내었다. 그리고 Rh-B를 이용한 방출실험에서는 높은 pH에서는 다량의 Rh-B가 하이드로젤 입자로부터 방출되었으나 낮은 pH에서는 Rh-B가 거의 방출되지 않는 pH에 따른 선택적 방출 특성을 나타내었다.
Recently, new methods to synthesize and process polymers without toxic organic solvents are needed in order to solve environmental problems. The use of supercritical carbon dioxide as a solvent for the polymer synthesis is attractive since it is non-toxic, non-flammable, naturally abundant, and the product may be easily separated from the solvent. In this study, we developed the method using super critical CO2 to prepare P(MAA-co-EGMA) hydrogel nanoparticles as an intelligent drug delivery carrier. The effects of concentrations of PtBuMA-PEO as a dispersion stabilizer and AIBN as an initiator on the particle synthesis were investigated. When PtBuMA-PEO concentration increased, the particle size decreased. However, there was no significant difference in the particle size according to the AIBN concentration. There was a drastic change of the equilibrium weight swelling ratio of P(MAA-co-EGMA) hydrogel nanoparticles at a pH of_x000D_ around 5, which is the pKa of PMAA. At a pH below 5, the hydrogels were in a relatively collapsed state but at a pH higher than 5, the hydrogels swelled to a high degree. In release experiments using Rh-B as a model solute, the P(MAA-co-EGMA) hydrogel nanoparticles showed a pH-sensitive release behavior. At low pH(pH 4.0) a small amount of Rh-B was released while at high pH(pH 6.0) a relatively large amount of Rh-B was released from the hydrogels.

References

Clifford T, Fundamentals of Supercritical Fluids, Oxford University Press, Oxford (1999)
Lee YW, HWAHAK KONGHAK, 41(6), 679 (2003)
Shiho H, DeSimone JM, J. Polym. Sci. A: Polym. Chem., 37(14), 2429 (1999)
Kendall JL, Canelas DA, Young JL, DeSimone JM, Chem. Rev., 99(2), 543 (1999)
Watkins JJ, Mccarthy TJ, Macromolecules, 27(17), 4845 (1994)
Watkins JJ, Mccarthy TJ, Macromolecules, 28(12), 4067 (1995)
Kang SR, Ju CS, Korean Chem. Eng. Res., 43(1), 21 (2005)
Kanjickal D, Lopina S, Evancho-Chapman MM, Schmidt S, Donovan D, Springhetti S, J. Biomed. Mater. Res., 68A, 489 (2003)
Korsmeyer RW, Lustig SR, Peppas NA, J. Polym. Sci. B: Polym. Phys., 24, 395 (1986)
Brazel CS, Peppas NA, Polymer, 40(12), 3383 (1999)
Byun YR, Chang HN, Kim YH, HWAHAK KONGHAK, 27(4), 561 (1989)
Qiu Y, Park K, Adv. Drug Deliv. Rev., 53, 321 (2001)
Lowman AM, Peppas NA, Mathiowitz E, Encyclopedia of Controlled Drug Delivery, Vol.1, Wiley, New York, 397-418 (1999)
Brazel CS, Peppas NA, Biomaterials, 20, 721 (1999)
You JO, Park SB, Park HY, Haam SJ, Kim JH, Kim WS, HWAHAK KONGHAK, 37(5), 789 (1999)
Foss AC, Goto T, Morishita M, Peppas NA, Eur. J. Pharm. Biopharm., 57, 163 (2004)
Kim B, Korean Chem. Eng. Res., 43(2), 299 (2005)
Peppas NA, Keys KB, Torres-Lugo M, Lowman AM, J. Control. Release, 62, 81 (1999)
Torres-Lugo M, Peppas NA, Macromolecules, 32(20), 6646 (1999)
Kim B, Peppas NA, Int. J. Pharm., 266, 29 (2003)
Shin Y, Kim KS, Kim B, Polym.(Korea), 32(5), 421 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로