Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 20, 2009
Accepted May 11, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
가압 삼상슬러리 기포탑에서 직경변화에 따른 기체-액체 물질전달 특성
Mass Transfer Characteristics in Pressurized Three-phase Slurry Bubble Columns with Variation of Column Diameter
충남대학교 화학공학과, 305-764 대전시 유성구 궁동 220
School of Chemical Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Korea
Korean Chemical Engineering Research, August 2009, 47(4), 459-464(6), NONE Epub 25 August 2009
Download PDF
Abstract
가압 삼상슬러리 기포탑에서 탑의 직경변화에 따라 기체-액체 물질전달 특성을 고찰하였다. 기체 유속, 운전압력, 액체점도, 슬러리상에서 고체입자의 양 그리고 탑의 직경이 기체-액체 부피물질전달계수에 미치는 영향을 결정하였다. 운전변수들이 물질전달계수에 미치는 영향은 기포탑의 직경이 변화함에 따라 다르게 나타났다. 기체-액체 부피물질전달계수는 기체유속이나 운전압력이 증가함에 따라 증가하였으나, 기포탑의 직경, 액체의 점도 그리고 슬러리상에 고체입자의 농도가 증가함에 따라 감소하였다. 기체-액체 물질전달계수가 기체유속 증가에 따라 증가하는 경향과 액체의 점도가 증가함에 따라 감소하는 경향은 기포탑의 직경이 증가함에 따라 점차 감소하였다. 그러나, 운전압력과 슬러리상에 포함된 고체입자의 농도가 기체-액체 물질전달계수에 미치는 영향은 기포탑의 직경이 변화함에 따라 큰 영향을 받지 않았다. 본 연구의 실험범위에서 기체-액체 물질전달계수는 다음 식과 같은 실험변수의 상관식으로 나타낼 수 있었다._x000D_
k(L)a=0.02D^(-0.26)U(G)^(0.28)P^(0.43)μ(L)^(-0.04)S(c)^(-0.35)
Gas-liquid mass transfer characteristics were investigated in pressurized three-phase slurry bubble columns with variation of column diameter. Effects of gas velocity, operating pressure, liquid viscosity, solid content in the slurry phase and column diameter on the gas-liquid volumetric mass transfer coefficient(k(L)a) were determined. The effects of operating variables on the mass transfer coefficient tended to change with variation of column diameter. The mass transfer coefficient increased with increasing gas velocity or operating pressure but decreased with increasing column diameter, liquid viscosity or solid concentration in the slurry phase. The increase trend of k(L)a value with increasing gas velocity and the decrease trend of k(L)a value with increasing liquid viscosity, tended to decrease gradually with increasing column diameter. However, the effects of operating pressure and solid concentration in the slurry phase on the_x000D_
k(L)a value did not change considerably with variation of column diameter. The values of k(L)a were well correlated with operating variables with in this experimental conditions as _x000D_
k(L)a=0.02D^(-0.26)U(G)^(0.28)P^(0.43)μ(L)^(-0.04)S(c)^(-0.35)
Keywords
References
Deckwer WD, Bubble Column Reactors, John wiley and Sons. Newyork (1992)
Krishna R, Sie ST, Fuel Process. Technol., 64(1-3), 73 (2000)
Fan LS, Gas-Liquid-Solid Fluidization Engineering, Butterworths, Boston (1989)
Kim SD, Kang Y, Chem. Eng. Sci., 52(21-22), 3639 (1997)
Kim SD, Kang Y, Studies Surface Science and Catalyst, 159, 103 (2006)
Shin IS, Son SM, Kim UY, Kang Y, Kim SD, Jung H, Korean J. Chem. Eng., 26(2), 587 (2009)
Kang Y, Cho YJ, Woo KJ, Kim SD, Chem. Eng. Sci., 54, 4887 (1993)
Kang Y, Lee IK, Shin IS, Son SM, Kim SD, Jung H, Korean Chem. Eng. Res., 46(3), 451 (2008)
Kang SH, Son SM, Kang Y, Bae JW, Jun KW, Korean J. Chem. Eng., 25(4), 897 (2008)
Son SM, Kang SH, Kim UY, Shin IS, Kang Y, Kim SD, J. Chem. Eng. Japan, 41, 655 (2008)
Davis BH, Catal. Today, 71(3-4), 249 (2002)
Maretto C, Krishna R, Catal. Today, 52(2-3), 279 (1999)
Bakopoulos A, Chem. Eng. Sci., 61(2), 538 (2006)
Behkish A, Lemoine R, Sehabiague L, Oukaci R, Morsi BI, Chem. Eng. J., 128(2-3), 69 (2007)
Krishna R, Sie ST, Fuel Process. Technol., 64(1-3), 73 (2000)
Fan LS, Gas-Liquid-Solid Fluidization Engineering, Butterworths, Boston (1989)
Kim SD, Kang Y, Chem. Eng. Sci., 52(21-22), 3639 (1997)
Kim SD, Kang Y, Studies Surface Science and Catalyst, 159, 103 (2006)
Shin IS, Son SM, Kim UY, Kang Y, Kim SD, Jung H, Korean J. Chem. Eng., 26(2), 587 (2009)
Kang Y, Cho YJ, Woo KJ, Kim SD, Chem. Eng. Sci., 54, 4887 (1993)
Kang Y, Lee IK, Shin IS, Son SM, Kim SD, Jung H, Korean Chem. Eng. Res., 46(3), 451 (2008)
Kang SH, Son SM, Kang Y, Bae JW, Jun KW, Korean J. Chem. Eng., 25(4), 897 (2008)
Son SM, Kang SH, Kim UY, Shin IS, Kang Y, Kim SD, J. Chem. Eng. Japan, 41, 655 (2008)
Davis BH, Catal. Today, 71(3-4), 249 (2002)
Maretto C, Krishna R, Catal. Today, 52(2-3), 279 (1999)
Bakopoulos A, Chem. Eng. Sci., 61(2), 538 (2006)
Behkish A, Lemoine R, Sehabiague L, Oukaci R, Morsi BI, Chem. Eng. J., 128(2-3), 69 (2007)