Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received June 1, 2009
Accepted July 3, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
원심 임펠러가 장착된 발효조에서 G. hansenii에 의한 미생물셀룰로오스 생산
Production of Bacterial Cellulose by Gluconacetobacter hansenii Using a New Bioreactor Equipped with Centrifugal Impellers
경북대학교 화학공학과 생물화공연구실, 702-701 대구광역시 북구 산격동 1370 1콤사츠대학교 약학과, 22060 아보타바드 파키스탄
Department of Chemical Engineering, Kyungpook National University, 1370 Sangyeok-dong, Buk-gu, Daegu 702-701, Korea 1Department of Pharmaceutical Science, COMSATS Insititute of Information Technology, University Road. Post Code 22060, Abbottabad, NWFP, Pakistan, Korea
parkjk@knu.ac.kr
Korean Chemical Engineering Research, August 2009, 47(4), 506-511(6), NONE Epub 25 August 2009
Download PDF
Abstract
미생물셀룰로오스의 생산성을 높이기 위하여 원심(centrifugal) 임펠러와 경사원심(inclined centrifugal) 임펠러가 사용되었다. 발효조 내의 유체흐름 형태와 부피산소전달 계수가 고찰되었으며 원심 임펠러 및 경사원심 임펠러가 장착된 발효조 내에서 G. hansenii PJK 균주에 의하여 미생물 셀룰로오스가 생산되었다. 유체는 발효조 하부에서 원심 임펠러의 실린더 내부를 통과하여 발효조 벽면을 향해 순환되었다. 임펠러의 회전속도 100 rpm에서 부피산소전달계수는 터바인 임펠러 계에 비하여 경사원심 임펠러의 경우는 23%, 원심 임펠러의 경우는 15%에 불과하였다. 하지만 미생물셀룰로오스 생산 불능 돌연변이주로의 전환이 방지되어 20 rpm의 경사원심 임펠러의 회전속도에서 미생물셀룰로 오스의 생산량이 터바인임펠러의 최적회전속도 300 rpm에서의 미생물셀룰로오스 생산량과 같았다.
In order to improve the bacterial cellulose(BC) production yield, centrifugal and inclined centrifugal impellers were developed. A 6 flat-blade turbine impeller was used as a control system. The flow pattern in the fermenter and volumetric oxygen transfer coefficient(kLa) of these fermentation systems were studied. Fermentations were carried out for the production of BC by G. hansenii PJK in a 2-L jar fermenter equipped with new impellers. Liquid medium was circulated from the bottom, through the cylinder of the impeller and to the wall. The volumetric oxygen transfer coefficients, kLa, of inclined centrifugal and centrifugal impeller systems at 100 rpm were 23 and 15% of the conventional turbine impeller system, respectively. However, the conversion of microbial cells to cellulose non-producing mutant decreased and this results in the increase in BC production at low rotating speed of impellers.
Keywords
References
Delmer DP, Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 245 (1999)
Ross P, Mayer R, Benziman M, Microbiol. Rev., 55, 35 (1991)
Yoshino T, Asakura T, Toda K, J. Ferment. Bioeng., 81(1), 32 (1996)
Klemm D, Schumann D, Udhard U, Marsch S, Prog. Polym. Sci., 26, 1561 (2001)
Ponyi T, Szabo L, Nagy T, Orosz L, Simpson PJ, Williamson MP, Gilbert HJ, J. Biochem., 39, 985 (2000)
Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P, Polym. Degrad. Stabil., 59, 93 (1998)
Park JK, Park YH, Jung JY, Biotechnol. Bioprocess. Eng., 8, 83 (2003)
Valla S, Kjosbakken J, J. General Microb., 128, 1401 (1981)
Park JK, Jung JY, Park YH, Biotechnol. Lett., 25(24), 2055 (2003)
Coucheron DH, J. Bacteriol., 173, 5723 (1991)
Jung JY, Park JK, Chang HN, Enzyme Microb. Technol., 37(3), 347 (2005)
Jung JY, Khan T, Park JK, Chang HN, Korean J. Chem. Eng., 24(2), 265 (2007)
Wang SJ, Zhong JJ, Biotechnol. Bioeng., 51(5), 511 (1996)
Wang SJ, Zhong JJ, Biotechnol. Bioeng., 51(5), 520 (1996)
Choi SB, Park JK, Korean J. Chem. Eng., 26, 45 (2009)
Khan T, Park JK, Carbohydr. Polym., 73, 438 (2008)
Ha JH, Shehzad O, Khan S, Lee SY, Park JW, Khan T, Park JK, Korean J. Chem. Eng., 25(4), 812 (2008)
Park JK, Hyun SH, Jung JY, Biotechnol. Bioprocess Eng., 9, 383 (2004)
Park JK, Jeong GS, J. Biosci. Bioeng., 91(1), 81 (2001)
Seo KS, Chang HN, Park JK, Choo KH, Appl. Microbiol. Biotechnol., 76(4), 951 (2007)
Park JK, Khan T, Jung JY, Carbohydr. Polym., 63, 482 (2006)
Ross P, Mayer R, Benziman M, Microbiol. Rev., 55, 35 (1991)
Yoshino T, Asakura T, Toda K, J. Ferment. Bioeng., 81(1), 32 (1996)
Klemm D, Schumann D, Udhard U, Marsch S, Prog. Polym. Sci., 26, 1561 (2001)
Ponyi T, Szabo L, Nagy T, Orosz L, Simpson PJ, Williamson MP, Gilbert HJ, J. Biochem., 39, 985 (2000)
Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P, Polym. Degrad. Stabil., 59, 93 (1998)
Park JK, Park YH, Jung JY, Biotechnol. Bioprocess. Eng., 8, 83 (2003)
Valla S, Kjosbakken J, J. General Microb., 128, 1401 (1981)
Park JK, Jung JY, Park YH, Biotechnol. Lett., 25(24), 2055 (2003)
Coucheron DH, J. Bacteriol., 173, 5723 (1991)
Jung JY, Park JK, Chang HN, Enzyme Microb. Technol., 37(3), 347 (2005)
Jung JY, Khan T, Park JK, Chang HN, Korean J. Chem. Eng., 24(2), 265 (2007)
Wang SJ, Zhong JJ, Biotechnol. Bioeng., 51(5), 511 (1996)
Wang SJ, Zhong JJ, Biotechnol. Bioeng., 51(5), 520 (1996)
Choi SB, Park JK, Korean J. Chem. Eng., 26, 45 (2009)
Khan T, Park JK, Carbohydr. Polym., 73, 438 (2008)
Ha JH, Shehzad O, Khan S, Lee SY, Park JW, Khan T, Park JK, Korean J. Chem. Eng., 25(4), 812 (2008)
Park JK, Hyun SH, Jung JY, Biotechnol. Bioprocess Eng., 9, 383 (2004)
Park JK, Jeong GS, J. Biosci. Bioeng., 91(1), 81 (2001)
Seo KS, Chang HN, Park JK, Choo KH, Appl. Microbiol. Biotechnol., 76(4), 951 (2007)
Park JK, Khan T, Jung JY, Carbohydr. Polym., 63, 482 (2006)