Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 16, 2009
Accepted November 4, 2009
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
도시 폐기물 폐목재의 탈휘발 특성
Devolatilization Characteristics of Municipal Wood Waste
건국대학교 화학공학과, 143-701 서울시 광진구 화양동 1 1한전전력연구원 녹색성장연구소, 305-380 대전광역시 유성구 문지로 65
Department of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea 1Green Growth Laboratory, Korea Electric Power Research Institute, KEPCO, 65 Munji-ro, Yuseong-gu, Daejeon 305-380, Korea
choijhoo@konkuk.ac.kr
Korean Chemical Engineering Research, February 2010, 48(1), 16-19(4), NONE Epub 4 March 2010
Download PDF
Abstract
질소 분위기의 고온(350~900 ℃)의 등온 열중량 분석기를 사용하여 도시 폐기물 폐목재의 탈휘발 특성을 측정 및 고찰하였다. 탈휘발은 온도범위 250~350 ℃에서 주로 발생하였다. 휘발분의 양은 온도가 증가할수록 증가하였으나, 527 ℃ 이상에서는 일정해졌다. 화학반응 율속의 shrinking particle model로 탈휘발반응을 잘 표현할 수 있었다. 탈휘발 활성화 에너지는 13.1~18.5 kJ/g mol이었다.
Devolatilization characteristics of municipal wood waste were measured by using an isothermal thermogravimetric analyzer(TGA) and discussed. Volatile matter was mainly released at temperatures between 250 ℃ and 350 ℃. The volatile content increased with an increase of temperature but levelled off at temperatures ≥527 ℃. The rate of devolatilization could be expressed by a shrinking particle model which was ruled by the reaction rate. The activation_x000D_
energy ranged from 13.1 to 18.5 kJ/g mol.
References
Kim JD, Choi IS, Lee BS, HWAHAK KONGHAK, 22(1), 15 (1984)
Choi KS, Woo SI, Chung IJ, HWAHAK KONGHAK, 25(6), 563 (1987)
Maniatis K, Buekens A, Elsevier, London, 179 (1988)
Reina J, Velo E, Puigjaner L, Ind. Eng. Chem. Res., 37(11), 4290 (1998)
Di Blasi C, Branca C, Can. J. Chem. Eng., 77(3), 555 (1999)
Di Blasi C, Branca C, Santoro A, Perez Bermudez RA, J. Anal. Appl. Pyrolysis., 57, 77 (2001)
Branca C, Di Blasi C, J. Anal. Appl. Pyrolysis., 67, 207 (2003)
Branca C, Di Blasi C, Fuel, 83, 81 (2003)
Tsamba AJ, Yang WH, Blasiak W, Fuel Process. Technol., 87(6), 523 (2006)
Liu Q, Wang S, Wang K, Luo Z, Cen K, Korean J. Chem. Eng., 26(2), 548 (2009)
Levenspiel O, Chemical Reaction Engineering, 3rd ed., John-Wiley and Sons, Inc., New York, NY, 607 (1999)
Choi KS, Woo SI, Chung IJ, HWAHAK KONGHAK, 25(6), 563 (1987)
Maniatis K, Buekens A, Elsevier, London, 179 (1988)
Reina J, Velo E, Puigjaner L, Ind. Eng. Chem. Res., 37(11), 4290 (1998)
Di Blasi C, Branca C, Can. J. Chem. Eng., 77(3), 555 (1999)
Di Blasi C, Branca C, Santoro A, Perez Bermudez RA, J. Anal. Appl. Pyrolysis., 57, 77 (2001)
Branca C, Di Blasi C, J. Anal. Appl. Pyrolysis., 67, 207 (2003)
Branca C, Di Blasi C, Fuel, 83, 81 (2003)
Tsamba AJ, Yang WH, Blasiak W, Fuel Process. Technol., 87(6), 523 (2006)
Liu Q, Wang S, Wang K, Luo Z, Cen K, Korean J. Chem. Eng., 26(2), 548 (2009)
Levenspiel O, Chemical Reaction Engineering, 3rd ed., John-Wiley and Sons, Inc., New York, NY, 607 (1999)