Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 7, 2009
Accepted January 26, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
일반화된 반데르발스 상태방정식을 이용한 비이상적 입자 상호작용을 갖는 알칸(선형성) 및 알킬 아민류(쌍극자성)에 대한 임계 영역 특성분석
The Description of Near-Critical Region for the Non-Ideal Inter-Particle Interacting Molecules such as n-Alkane(linear) and Alkyl-Amine(dipolar) by using Generalized van der Waals Equation of States
동국대학교 서울 IT학부 정보통신공학과, 100-715 서울특별시 중구 필동 3가 26 1퀀텀에너지연구소, 100-272 서울특별시 중구 필동 2가 82-1 충무로관 306호
Department of Information & Communications Engineering, Dongguk Univ-Seoul, 26, Pil-dong 3-ga, Jung-gu, Seoul 100-715, Korea 1Quantum Energy Research Centre, 306 Chungmuro-gwan, 82-1, Pil-dong 2-ga, Jung-gu, Seoul 100-272, Korea
Korean Chemical Engineering Research, April 2010, 48(2), 224-231(8), NONE Epub 3 May 2010
Download PDF
Abstract
최근 발표된 GvdW(Generalized van der Waals) EOS에서는 상호작용이 vdWf(van der Waals force)뿐이라고 여겨지는 구체특성의 비선형적 입자에 대해 임계영역에서의 상태 특성이 잘 기술될 수 있음을 보였다. 그러나 기존의 논문에서는 선형성을 갖는 입자의 형태나 정전기적 인력 등 추가적인 상호작용이 존재하는 입자에 대해서도 GvdW가 정확성을 나타내는지에 대한 분석이 이루어지지 않아, GvdW의 범용성에 대한 논란의 여지가 남아있다. 따라서 본 논문에서는 선형성을 갖는 입자인 포화 알칸 유도체 류(R=methane, ethane, propane, butane)와 정전기적 인력이 극한적으로 나타나는 포화 아민 유도체 류(RNH2, R=methyl-, ethyl-, propyl-amine)에 대한 임계영역 시뮬레이션을 위하여 이들 입자들에 대한 GvdW의 파라미터 값을 정의하였으며, 이를 바탕으로 최근에 발표된 기존의 상태방정식들과 비교 분_x000D_
석하였다. 시뮬레이션 결과 포화 알칸 유도체 류와 포화 아민 유도체 류 입자에 대하여 GvdW는 기존의 방정식들보다 측정값에 더 가까운 정확한 임계영역 특성이 나타남을 확인할 수 있었다. 특히 분자량이 큰 부탄에 있어서는 GvdW EOS만이 임계점에 정확하게 근접함을 알 수 있었다.
In GvdW EOS, a recently presented paper, shows that the characteristic status for spherical non-linear particle, of which the mutual behavior is known to be vdWf(van der Waals force) only, could be described well enough in the critical region. However, in current papers, analysis has not been done on GvdW about whether it is accurate or not, even for the particles in the linear form or those with the additional mutual behavior such as static-electricity, so there’s some argument about the wide use of that. Therefore, in this paper, for the simulation in the critical region of Normal-alkane group(R=methane, ethane, propane, butane) which are the particles that has a linear charateristic and Normal-amine group(RNH2, R=methyl-, ethyl-, propyl-amine) where static-electricity is extremely shown, GvdW parameter values about these particles are defined, and based on this simulation, we compared results to the current EOS presented recently, and_x000D_
analyzed them. Through the simulation, it was shown that in case of Normal-alkane group and Normal-amine group molecules, GvdW presents an accurate critical region characteristic which is far more close to the measurement compared to current EOSs. Especially for butane with big amount in molecules, we found out that only GvdW EOS can reach close enough to the critical point.
Keywords
References
Lee S, Jeon J, Kim W, Chair TS, J. Phys. Chem. B, 112(49), 15725 (2008)
Johannes D, Waals VD, “On the Continuity of the Gaseous and Liquid States(doctoral dissertation),” Universiteit Leiden (1873)
Souahi F, Sator S, Albane SA, Kies FK, Chitour CE, Fluid Phase Equilib., 153(1), 73 (1998)
Hernandez-Garduza O, Garcia-Sanchez F, Apam-Martinez D, Vazquez-Roman R, Fluid Phase Equilib., 198(2), 195 (2002)
Cismondi M, Mollerup J, Fluid Phase Equilib., 232(1-2), 74 (2005)
Belyakov MY, Gorodetskii EE, Int. J. Thermophys., 27, 1387 (2006)
Lee Y, Shin MS, Yeo JK, Kim H, J. Chem. Thermodyn., 39(9), 1257 (2007)
Chao J, Gadalla NAM, Gammon BE, Marsh KN, Rodgers AS, Somayajulu GR, Wilhoit RC, J. Phys. Chem., 19, 1547 (1990)
Redlich O, Kwong JNS, Chem. Rev., 44, 233 (1949)
Twu CH, Coon JE, Cunningham JR, Fluid Phase Equilib., 105(1), 49 (1995)
Twu CH, Coon JE, Cunningham JR, Fluid Phase Equilib., 105(1), 61 (1995)
Yaws CL, Chemical Properties Handbook, McGRAW-HILL (1999)
Lide DR, Handbook of Chemistry and Physics, 76th, CRC Press (1995)
Dieterici C, Annalen der Physik, 305, 685 (1899)
Cleeton CE, Williams NH, Phys. Rev., 45, 234 (1934)
Lambert JD, Roberts GAH, Rowlinson JS, Wilkinson VJ, Proc. R. Soc., 196, 113 (1949)
Lambert JD, Strong EDT, Proc. R. Soc., 200, 566 (1950)
Johannes D, Waals VD, “On the Continuity of the Gaseous and Liquid States(doctoral dissertation),” Universiteit Leiden (1873)
Souahi F, Sator S, Albane SA, Kies FK, Chitour CE, Fluid Phase Equilib., 153(1), 73 (1998)
Hernandez-Garduza O, Garcia-Sanchez F, Apam-Martinez D, Vazquez-Roman R, Fluid Phase Equilib., 198(2), 195 (2002)
Cismondi M, Mollerup J, Fluid Phase Equilib., 232(1-2), 74 (2005)
Belyakov MY, Gorodetskii EE, Int. J. Thermophys., 27, 1387 (2006)
Lee Y, Shin MS, Yeo JK, Kim H, J. Chem. Thermodyn., 39(9), 1257 (2007)
Chao J, Gadalla NAM, Gammon BE, Marsh KN, Rodgers AS, Somayajulu GR, Wilhoit RC, J. Phys. Chem., 19, 1547 (1990)
Redlich O, Kwong JNS, Chem. Rev., 44, 233 (1949)
Twu CH, Coon JE, Cunningham JR, Fluid Phase Equilib., 105(1), 49 (1995)
Twu CH, Coon JE, Cunningham JR, Fluid Phase Equilib., 105(1), 61 (1995)
Yaws CL, Chemical Properties Handbook, McGRAW-HILL (1999)
Lide DR, Handbook of Chemistry and Physics, 76th, CRC Press (1995)
Dieterici C, Annalen der Physik, 305, 685 (1899)
Cleeton CE, Williams NH, Phys. Rev., 45, 234 (1934)
Lambert JD, Roberts GAH, Rowlinson JS, Wilkinson VJ, Proc. R. Soc., 196, 113 (1949)
Lambert JD, Strong EDT, Proc. R. Soc., 200, 566 (1950)