ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 28, 2010
Accepted February 24, 2010
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

리튬이온전지용 TiO2 나노튜브 음전극 특성

Anode Properties of TiO2 Nanotube for Lithium-Ion Batteries

한국전자통신연구원 융합부품소재연구부문 전력제어소자팀, 305-700 대전광역시 유성구 가정로 138
Research Team of Power Control Devices, Electronics & Telecommunications Research Institute (ETRI), 138 Gajeong-ro, Yuseong-gu, Daejon 305-700, Korea
kwang@etri.re.kr
Korean Chemical Engineering Research, June 2010, 48(3), 283-291(9), NONE Epub 5 July 2010
downloadDownload PDF

Abstract

리튬이온전지의 음전극으로 사용하기 위해 주로 알카리 수열합성법과 열처리에 의해 제조되는 TiO2 나노튜브의 전기화학적 특성에 관한 연구결과를 조사하여, 그 충방전 특성을 분석하였다. 현재까지 리튬과 TiO2의 전기화학반응으로 생성되는 LixTiO2의 이론용량인 335 mAh g^(-1)(x=1)를 초과하는 최대방전용량 338 mAh g^(-1)(x=1.01)을 TiO2(B) 상을 갖는 나노튜브가 나타내었다. 이것은 리튬의 자가확산이 활성에너지 0.48 eV 정도로 느리므로 이보다 확산거리가 짧도록 TiO2 나노튜브의 구조를 조정하여 리튬 수송이 원활하도록 하였기 때문이다. 또한 TiO2 나노튜브 구조체는 벌크상은 물론 표면에서의 뛰어난 이온저장성 때문에 리튬이온전지의 음전극 소재뿐만 아니라 고출력 특성이 필요한 커페시터 소자의 전극소재로도 활용할 수 있다.
In this review, the studies on the electrochemical properties of TiO2 nanotube as an anode material of lithium-ion battery, which was prepared by an alkaline hydrothermal reaction and anneling process, were investigated and analyzed in terms of charge-dischage characteristics. Up to date, a maximum discharge capacity of 338 mAh g^(-1)(x=1.01) was achieved by the nanotube with TiO2(B) phase, whereas the theoretical capacity of TiO2 anode was 335 mAh g^(-1)(x=1) in the basis of LixTiO2 as a product of electrochemical reaction between TiO2 and lithium. This was due to fast lithium transport by a shortened diffusion path provided by controlling the nanostructure of TiO2, because the self-diffusion of lithium was slow in a basis of its activation energy as 0.48 eV. Due to an excellent ion storage capabilities in both the surface and the bulk phase, the TiO2 nanotube could be a promising active material as both an anode_x000D_ of lithium-ion battery and an electrode of capacitor with high-rate performances.

References

Tarascon JM, Armand M, Nature, 414, 359 (2001)
Arico AS, Bruce P, Scrosati B, Tarascon JM , van Schalkwijk W, Nature Mater., 4, 366 (2005)
Bruce PG, Scrosati B, Tarascon JM, Angew. Chem. Intern. Ed., 47, 2930 (2008)
Balaya P, Bhattacharyya AJ, Jamnik J, Zhukovskii YF, Kotomin EA, Maier J, J. Power Sources, 159(1), 171 (2006)
Meethong N, Huang HYS, Carter WC, Chiang YM, Electrochem. Solid State Lett., 10(5), A134 (2007)
Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Langmuir, 14(12), 3160 (1998)
Bavykin DV, Friedrich JM, Walsh FC, Adv. Mater., 18(21), 2807 (2006)
Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Adv. Mater., 11(15), 1307 (1999)
Chen Q, Zhou WZ, Du GH, Peng LM, Adv. Mater., 14(17), 1208 (2002)
Zhang M, Jin ZS, Zhang JW, Guo XY, Yang HJ, Li W, Wang XD, Zhang ZJ, J. Mol. Catal. A-Chem., 217(1-2), 203 (2004)
Bavykin DV, Parmon VN, Lapkin AA, Walsh FC, J. Mater. Chem., 14, 3370 (2004)
Ma RZ, Bando Y, Sasaki T, J. Phys. Chem. B, 108(7), 2115 (2004)
Zhang S, Peng LM, Chen Q, Du GH, Dawson G, Zhou WZ, Phys. Rev. Lett., 91, 256103 (2003)
Bavykin DV, Walsh FC, Eur. J. Inorg. Chem., 977 (2009)
Kavan L, Gratzel M, Rathousky J, Zukal A, J. Electrochem. Soc., 143(2), 394 (1996)
Wagemaker M, Borghols WJH, Mulder FM, J. Am. Chem. Soc., 129, 4323 (2009)
Sudant G, Baudrin E, Larcher D, Tarascon JM, J. Mater. Chem., 15, 1263 (2005)
Hardwick LJ, Holzapfel M, Novak P, Dupont L, Baudrin E, Electrochim. Acta, 52(17), 5357 (2007)
Kavan L, Rathousky J, Gratzel M, Shklover V, Zukal A, J. Phys. Chem. B, 104(50), 12012 (2000)
Kavan L, Kalbac M, Zukalova M, Exnar I, Lorenzen V, Nesper R, Gratzel M, Chem. Mater., 16, 477 (2004)
Zukalova M, Kalbac M, Kavan L, Exnar I, Gratzel M, Chem. Mater., 17, 1248 (2005)
Wagemaker M, van de Krol R, Kentgens APM, van Well AA, Mulder FM, J. Am. Chem. Soc., 123(46), 11454 (2001)
Wagemaker M, Kentgens APM, Mulder FM, Nature, 418, 397 (2002)
Wagemaker M, Borghols WJH, van Eck ERH, Kentgens APM, Kearley GJ, Mulder FM, Chem. Eur. J., 13, 2023 (2007)
Kim DH, Yoon JH, Lee KS, Jung YH, Lee BR, Jang JS, Choi DK, Kim SJ, Sun YK, Lee KS, J. Nanosci. Nanotech., 8, 5022 (2008)
Oh SW, Park SH, Sun YK, J. Power Sources, 161(2), 1314 (2006)
Baudrin E, Cassaignon S, Koelsch M, Jolivet JP, Dupont L, Tarascon JM, Electrochem. Commun., 9, 337 (2007)
Jiang CH, Honma I, Kudo T, Zhou HS, Electrochem. Solid State Lett., 10(5), A127 (2007)
Jiang CH, Wei MD, Qi ZM, Kudo T, Honma I, Zhou HS, J. Power Sources, 166(1), 239 (2007)
Yang J, Jin Z, Wang X, Li W, Zhang J, Zhang S, Guo X, Zhang Z, Dalton Trans., 3898 (2003)
Yao BD, Chan YF, Zhang XY, Zhang WF, Yang ZY, Wang N, Appl. Phys. Lett., 82, 281 (2003)
Morgado Jr. E, de Abreu MAS, Pravia ORC, Marinkovic BA, Jardim PM, Rizzo FC, Araujo AS, Solid State Sci., 8, 888 (2006)
Ma RZ, Fukuda K, Sasaki T, Osada M, Bando Y, J. Phys. Chem. B, 109(13), 6210 (2005)
Kukovecz A, Hodos N, Horvath E, Radnoczi G, Konya Z, Kiricsi I, J. Phys. Chem. B, 109(38), 17781 (2005)
Cortes-Jacome MA, Ferrat-Torres G, Ortiz LFF, Angeles-Chavez C, Lopez-Salinas E, Escobar J, Mosqueira ML, Toledo-Antonio JA, Catal. Today, 126(1-2), 248 (2007)
Zhu KR, Yuan Y, Zhang MS, Hong JM, Deng Y, Yin Z, Solid State Commun., 144, 450 (2007)
Thorne A, Kruth A, Tunstall D, Irvine JTS, Zhou WZ, J. Phys. Chem. B, 109(12), 5439 (2005)
Lan Y, Gao XP, Zhu HY, Zheng ZF, Yan TY, Wu F, Ringer SP, Song DY, Adv. Funct. Mater., 15(8), 1310 (2005)
Gajovic A, Friscic I, Plodinec M, Ivekovic D, J. Mol. Struct., 924, 183 (2009)
Jung HG, Oh SW, Ce J, Jayaprakash N, Sun YK, Electrochem. Commun., 11, 756 (2009)
Wang ZY, Liu SZ, Chen G, Xia DG, Electrochem. Solid State Lett., 10(3), A77 (2007)
Lee DH, Park JG, Choi KJ, Choi HJ, Kim DW, Eur. J. Inorg. Chem., 878 (2008)
Inaba M, Oba Y, Niina F, Murota Y, Ogino Y, Tasaka A, Hirota K, J. Power Sources, 189(1), 580 (2009)
Zhou YK, Cao L, Zhang FB, He BL, Li HL, J. Electrochem. Soc., 150(9), A1246 (2003)
Gao XP, Lan Y, Zhu HY, Liu JW, Ge YP, Wu F, Song DY, Electrochem. Solid State Lett., 8(1), A26 (2005)
Li JR, Tang ZL, Zhang ZT, Electrochem. Solid State Lett., 8(6), A316 (2005)
Xu JW, Ha CH, Cao B, Zhang WF, Electrochim. Acta, 52(28), 8044 (2007)
Kim J, Cho J, J. Electrochem. Soc., 154(6), A542 (2007)
Das K, Panda SK, Chaudhuri S, J. Cryst. Growth, 310(16), 3792 (2008)
Armstrong AR, Armstrong G, Canales J, Bruce PG, Angew. Chem. Intern. Ed., 43, 2286 (2004)
Armstrong AR, Armstrong G, Canales J, Garcia R, Bruce PG, Adv. Mater., 17(7), 862 (2005)
Armstrong AR, Armstrong G, Canales J, Bruce PG, J. Power Sources, 146(1-2), 501 (2005)
Armstrong G, Armstrong AR, Bruce PG, Reale P, Scrosati B, Adv. Mater., 18(19), 2597 (2006)
Wilkening M, Lyness C, Armstrong AR, Bruce PG, J. Phys. Chem. C, 113, 4741 (2009)
Armstrong G, Armstrong AR, Canales J, Bruce PG, Chem. Commun., 2454 (2005)
Armstrong G, Armstrong AR, Canales J, Bruce PG, Electrochem. Solid State Lett., 9(3), A139 (2006)
Tsai MC, Chang JC, Sheu HS, Chiu HT, Lee CY, Chem. Mater., 21, 499 (2009)
Tang W, J. Mater. Chem., 14, 3457 (2004)
Yoon S, Ka BH, Lee C, Park M, Oh SM, Electrochem. Solid State Lett., 12(2), A28 (2009)
Xu JW, Wang YF, Li ZH, Zhang W, J. Power Sources, 175(2), 903 (2008)
Wang Q, Wen ZH, Li JH, Adv. Funct. Mater., 16(16), 2141 (2006)
Wang Q, Wen Z, Li J, J. Nanosci. Nanotech., 7, 3328 (2007)
Brousse T, Marchand R, Taberna PL, Simon P, J. Power Sources, 158(1), 571 (2006)
Wei MD, Qi ZM, Ichihara M, Honma I, Zhou HS, Chem. Phys. Lett., 424(4-6), 316 (2006)
Wang Q, Wen ZH, Li JH, Inorg. Chem., 45(17), 6944 (2006)
Zhang H, Li GR, An LP, Yan TY, Gao XP, Zhu HY, J. Phys. Chem. C, 111, 6143 (2007)
Wang YF, Wu MY, Zhang WF, Electrochim. Acta, 53(27), 7863 (2008)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로