Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 15, 2010
Accepted March 10, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
전산유체역학을 이용한 교반탱크 내 유체흐름 해석
Analysis of Fluid Flows in a Stirred Tank Using Computational Fluid Dynamics
공주대학교 화학공학부, 314-701 충남 공주시 신관동 182
Department of Chemical Engineering, Kongju National University, 182 Singwan-dong, Gongju-si, Chungnam 314-701, Korea
Korean Chemical Engineering Research, June 2010, 48(3), 337-341(5), NONE Epub 5 July 2010
Download PDF
Abstract
직경 1 m, 높이 1 m의 교반탱크 내 유체흐름 패턴을 상용 전산유체역학 프로그램의 하나인 CFX를 사용하여 해석함으로써 교반속도, 임펠러 회전날개의 경사각, 방해판의 존재 유무, 탱크바닥 형태가 흐름패턴에 미치는 영향을 알아보았다. 방해판이 없을 경우 탱크 중심에서 와류가 관찰되었으며 교반속도가 증가함에 따라 탱크 중심의 와류 현상이 증가하였으나, 방해판 설치에 의해 와류가 감소하였다. 임펠러 날개의 경사각을 증가시킴으로써 교반탱크 상하로의 유체흐름이 증가하였고 와류도 감소하였다. 탱크바닥을 수평으로 하는 것 보다 둥글게 함으로써 탱크 바닥 구석에서 유체흐름이 원활하게 변화하였다.
The flow patterns in a stirred tank, 1m in diameter and 1 m in height, were studied using CFX, a commercial computational fluid dynamics program, with the impeller rotation speed, the impeller blade angle and the tankbottom shape varied and the baffles included or excluded. A vortex was observed in the center of the tank in the absence of the baffles, and the intensity of the vortex increased with increasing the rotation speed. The vortex was considerably reduced in the presence of the baffles. An increase in the blade angle increased the vertical flow and decreased the vortex intensity. The flow in the corners of the tank bottom turned smoother as the tank bottom was varied in shape from flat to round.
References
Choi BS, Wan B, Philyaw S, Dhanasekharan K, Ring TA, Ind. Eng. Chem. Res., 43(20), 6548 (2004)
Rudniak L, Machniewski PM, Milewska A, Molga E, Chem. Eng. Sci., 59(22-23), 5233 (2004)
Vakili MH, Esfahany MN, Chem. Eng. Sci., 64(2), 351 (2009)
Deglon DA, Meyer CJ, Miner. Eng., 19, 1059 (2006)
Magnico P, Fongarland P, Chem. Eng. Sci., 61(4), 1217 (2006)
Ahn I, Song A, Hur N, Korean Soc. Comput. Fluids Eng., 11, 9 (2006)
Park K, Park KY, Ju J, Park JT, Korean Chem. Eng. Res., 40, 507 (2002)
Ju JS, Shin SB, Lee HS, Lee MW, Hong CS, Korean Chem. Eng. Res., 37, 850 (1999)
Kerdouss F, Bannari A, Proulx P, Chem. Eng. Sci., 61(10), 3313 (2006)
CFX4 Solver Manual, AEA Technology (1997)
Rahimi M, Parvareh A, Chem. Eng. J., 115(1-2), 85 (2005)
Launder BE, Spaldng DB, Comput. Meth. Appl. Mech. Eng., 3, 269 (1974)
Rudniak L, Machniewski PM, Milewska A, Molga E, Chem. Eng. Sci., 59(22-23), 5233 (2004)
Vakili MH, Esfahany MN, Chem. Eng. Sci., 64(2), 351 (2009)
Deglon DA, Meyer CJ, Miner. Eng., 19, 1059 (2006)
Magnico P, Fongarland P, Chem. Eng. Sci., 61(4), 1217 (2006)
Ahn I, Song A, Hur N, Korean Soc. Comput. Fluids Eng., 11, 9 (2006)
Park K, Park KY, Ju J, Park JT, Korean Chem. Eng. Res., 40, 507 (2002)
Ju JS, Shin SB, Lee HS, Lee MW, Hong CS, Korean Chem. Eng. Res., 37, 850 (1999)
Kerdouss F, Bannari A, Proulx P, Chem. Eng. Sci., 61(10), 3313 (2006)
CFX4 Solver Manual, AEA Technology (1997)
Rahimi M, Parvareh A, Chem. Eng. J., 115(1-2), 85 (2005)
Launder BE, Spaldng DB, Comput. Meth. Appl. Mech. Eng., 3, 269 (1974)