Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received March 2, 2010
Accepted September 1, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
P-25 광촉매의 열처리 온도에 따른 염료감응태양전지의 효율특성
Efficiency Characteristics of Dye-Sensitized Solar Cells with Heat Treatment Temperature of P-25 Photocatalyst
1전남대학교 환경공학과, 500-757 광주시 북구 용봉동 300 2한국원자력연구원 핵주기공정기술개발부, 305-353 대전시 유성구 덕진동 150
1Department of Environmental Engineering, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju 500-757, Korea 2Fuel Cycle Process Technology Development Division, Korea Atomic Energy, 150, Duckjin-dong, Yuseong-gu, Daejeon 305-353, Korea
parkkimin-1@hanmail.net
Korean Chemical Engineering Research, October 2010, 48(5), 649-653(5), NONE Epub 17 November 2010
Download PDF
Abstract
본 연구에서는 열처리 온도(Pure: non-thermally treated, 450, 650, 850 oC)에 따른 P-25 광촉매의 특성 변화를 조사하였으며, 이 광촉매를 이용하여 염료 감응형 태양전지를 제조하고 그 효율 특성을 연구하였다. P-25 광촉매의 열처리 온도에 따른 Methylene blue의 광분해 정도는, Pure와 450~650 ℃에서 소성된 광촉매들의 광분해도는 3시간 이후 약 97~99%로 비슷한 결과를 보였고, 850 ℃에서 소성된 광촉매는 약 46%로 다른 광촉매에 비해 낮은 값을 보였다. 비열처리(Pure) 광촉매와 450, 650, 850 ℃에서 열처리한 광촉매를 이용하여 제조한 염료감응형 태양전지의 에너지 변환 효율은 각각 6.9, 6.5, 5.8 그리고 5.6%로 각각 나타났다.
In this study, the variation of characteristics of P-25 photocatalyst with calcination temperature(Pure: nonthermally treated, 450, 650, 850 ℃) was studied. The photocatalysts were used as working materials for dye-sensitized solar cells: DSSCs) later on and their photovoltaic characterization was carried out. The photocatalytic degradation of methylene blue using the P-25 photocatalyst with different calcination temperature was almost same expect for 850 ℃. The solar energy conversion efficiency (η) of DSSCs prepared by the nanoparticles (photocatalyst) reached 6.9% (for pure), 6.5%(for 450), 5.8%(for 650) and 5.6%(850).
References
Madhusudan Reddy K, Gopal Reddy CV, Manorama SV, J. Solid State Chem., 158, 180 (2001)
Ohno T, Sarukawa K, Tokieda K, Matsumura M, J. Catal., 203(1), 82 (2001)
Driessen MD, Grassian VH, J. Phys. Chem., B102, 1418 (1998)
Byrne JA, Eggins BR, Brown NMD, McKinney B, Rouse M, Appl. Catal. B: Environ., 17(1-2), 25 (1998)
Nahnemann DW, Hoffmann MR, Environ. Sci. Technol., 25, 494 (1991)
Korea institute of Science and Technology Information., “High Efficiency Nano Solar Cells,” (2008)
Michael G, Prog. Photovolt. Res., 8, 171 (2000)
Susan B, Editor Maryadele J, O'Neil, Associate Editor Ann Smith, Assistant Editor, Patricia E. Geckelman, Editorial Assistant, “The Merck Index”, An Encyclopedia of Chemicals, drugs, and Biologicals, Merck & Co., Inc., USA, 954 (1989)
John AD, “Lange’s Handbook of Chemistry,”Mc Graw-hill. Inc. USA, 1266-1267 (1999)
Ohno T, Sarukawa K, Tokieda K, Matsumura M, J. Catal., 203(1), 82 (2001)
Driessen MD, Grassian VH, J. Phys. Chem., B102, 1418 (1998)
Byrne JA, Eggins BR, Brown NMD, McKinney B, Rouse M, Appl. Catal. B: Environ., 17(1-2), 25 (1998)
Nahnemann DW, Hoffmann MR, Environ. Sci. Technol., 25, 494 (1991)
Korea institute of Science and Technology Information., “High Efficiency Nano Solar Cells,” (2008)
Michael G, Prog. Photovolt. Res., 8, 171 (2000)
Susan B, Editor Maryadele J, O'Neil, Associate Editor Ann Smith, Assistant Editor, Patricia E. Geckelman, Editorial Assistant, “The Merck Index”, An Encyclopedia of Chemicals, drugs, and Biologicals, Merck & Co., Inc., USA, 954 (1989)
John AD, “Lange’s Handbook of Chemistry,”Mc Graw-hill. Inc. USA, 1266-1267 (1999)