Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 8, 2010
Accepted August 18, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
제올라이트(faujasite)를 이용한 치환탈착공정에서 에탄, 에틸렌의 흡, 탈착 동특성
Adsorption and Desorption Dynamics of Ethane and Ethylene in Displacement Desorption Process using Faujasite Zeolite
Ji-In Lee
Jong-Ho Park
Hee-Tae Beum
Kwang-Bok Yi
Chang-Hyun Ko
Sung Youl Park
Yong-taek Lee1†
Jong-Nam Kim†
한국에너지기술연구원 온실가스연구단, 305-343 대전시 유성구 장동 71-2 1충남대학교 화학공학과, 305-764 대전시 유성구 궁동 220
Greenhouse Gas Research Center, Korean Institute Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea 1Depargment of chemical Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 304-764, Korea
Korean Chemical Engineering Research, December 2010, 48(6), 768-775(8), NONE Epub 11 January 2011
Download PDF
Abstract
제올라이트(faujasite) 흡착제가 충진된 흡착탑에서 에탄/에틸렌 혼합가스의 흡착 동특성과 탈착제로 프로판을 이용한 치환탈착 시의 동특성을 실험 및 이론적으로 연구하였다. 물질수지와 에너지수지를 고려하고 다성분 흡착평형으로 이상흡착상 모델을 적용한 전산모사는 흡탈착 파과곡선 실험 결과를 잘 예측하였다. 흡착파과 시 에탄의 롤-엎은 흡착압력이 높고, 온도가 낮을수록 증가하였다. 에탄/에틸렌 혼합가스로 포화된 흡착탑으로 탈착제인 프로판을 주입하여 치환탈착할 때 탈착단계의 일정 시간 동안에 거의 100%에 가까운 에틸렌을 얻을 수 있었다. 탈착제의 흡착세기는 에틸렌의 탈착 및 재흡착 시에 큰 영향을 미치는 것으로 나타났다. 프로판 대신 흡착세기가 강한 이소부탄을 탈착제로 사용한 경우에 탈착단계 후 재흡착에서 에틸렌 흡착용량이 많이 감소하는 현상이 관찰되었다. 전산모사를 통하여_x000D_
(q(s)×b)C2H4/(q(s)×b)C3Hs 의 비율이 0.83일 때, 즉 탈착제와 에틸렌이 거의 유사한 정도의 흡착세기를 가질 때 치환탈착공정의 성능이 우수하였다.
Adsorption dynamics of ethane/ethylene mixture gas and desorption dynamics during the displacement desorption with propane as a desorbent in the column filled with faujasite adsorbent were investigated experimentally and theoretically. The simulation that adopted heat and mass balance and an ideal adsorbed solution theory (IAST) for the multicomponent adsorption equilibrium well predicted the experimental breakthrough curves of the adsorption and desorption. At the adsorption breakthrough experiments, roll-ups of ethane increased as the adsorption pressure increased and the adsorption temperature decreased. During the displacement desorption with propane in the column saturated with ethane/ethylene mixture gas, almost 100% of ethylene was obtained for a certain time interval. The adsorption strength of the desorbent greatly affected the adsorption and re-adsorption dynamics of ethylene. The re-adsorption capacity for ethylene has been greatly reduced when iso-propane, which is stronger desorbent than propane, was used as desorbent. It was found from the simulation that the performance of the displacement desorption process would be superior when the ratio of (q(s)×b)C2H4_x000D_
/(q(s)×b)C3Hs was 0.83, that is, the adsorption strengths of ethylene and the desorbent were similar.
References
Park JH, Lee HK, Han SS, Kim JN, Cho SH, HWAHAK KONGHAK, 40(4), 467 (2002)
Safarik DJ, Eldridge RB, Ind. Eng. Chem. Res., 37(7), 2571 (1998)
Benali M, Aydin B, Sep. Purif. Technol., 73(3), 377 (2010)
Grande CA, Rodrigues AE, Ind. Eng. Chem. Res., 44(23), 8815 (2005)
Park JH, Lee HK, Han SS, Kim JN, Cho SH, HWAHAK KONGHAK, 40(4), 467 (2002)
Wu ZB, Han SS, Cho SH, Kim JN, Chue KT, Yang RT, Ind. Eng. Chem. Res., 36(7), 2749 (1997)
Son Y, Han S, Park J, Kim J, Cho S, Lee T, HWAHAK KONGHAK, 41(6), 749 (2003)
Chen L, Liu XQ, Chin. J. Chem. Eng., 16(4), 570 (2008)
Cho SH, Han SS, kim JN, Kumar P, Choudary NV, Bhat SGT, U.S. Patent 6,315,846 (2001)
Rao DP, Sivakumar SV, Ramaprasad BSG, Journal of Chromatography A, 1069, 141 (2005)
Grande CA, Gigola C, Rodrigues AE, Langmuir, 20, 5291 (2002)
Lamia N, Wolff L, Leflaive P, Gomes PS, Grande CA, Rodrigues AE, Sep. Sci. Technol., 42(12), 2539 (2007)
Lamia N, Granato MA, Gomes PSA, Grande CA, Wolff L, Leflaive P, Leinekugel-le-Cocq D, Rodrigues AE, Sep. Sci. Technol., 44(7), 1485 (2009)
Ruthven DM, Principles of Adsorption & Adsorption Processes, John Wiley & Sons (1984)
Safarik DJ, Eldridge RB, Ind. Eng. Chem. Res., 37(7), 2571 (1998)
Benali M, Aydin B, Sep. Purif. Technol., 73(3), 377 (2010)
Grande CA, Rodrigues AE, Ind. Eng. Chem. Res., 44(23), 8815 (2005)
Park JH, Lee HK, Han SS, Kim JN, Cho SH, HWAHAK KONGHAK, 40(4), 467 (2002)
Wu ZB, Han SS, Cho SH, Kim JN, Chue KT, Yang RT, Ind. Eng. Chem. Res., 36(7), 2749 (1997)
Son Y, Han S, Park J, Kim J, Cho S, Lee T, HWAHAK KONGHAK, 41(6), 749 (2003)
Chen L, Liu XQ, Chin. J. Chem. Eng., 16(4), 570 (2008)
Cho SH, Han SS, kim JN, Kumar P, Choudary NV, Bhat SGT, U.S. Patent 6,315,846 (2001)
Rao DP, Sivakumar SV, Ramaprasad BSG, Journal of Chromatography A, 1069, 141 (2005)
Grande CA, Gigola C, Rodrigues AE, Langmuir, 20, 5291 (2002)
Lamia N, Wolff L, Leflaive P, Gomes PS, Grande CA, Rodrigues AE, Sep. Sci. Technol., 42(12), 2539 (2007)
Lamia N, Granato MA, Gomes PSA, Grande CA, Wolff L, Leflaive P, Leinekugel-le-Cocq D, Rodrigues AE, Sep. Sci. Technol., 44(7), 1485 (2009)
Ruthven DM, Principles of Adsorption & Adsorption Processes, John Wiley & Sons (1984)