Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 31, 2010
Accepted August 25, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
공기 중 톨루엔에 의한 고분자전해질연료전지의 성능감소
Decrease of PEMFC Performance by Toluene in Air
순천대학교 화학공학과, 540-742 전남 순천시 매곡동 315 1현대자동차 환경기술연구소, 446-912 경기도 용인시 기흥구 마북동 104
Department of Chemical Engineering, Sunchon National University, 315 Maegok-dong, Suncheon-si, Jeonnam 540-742, Korea 1HMC Eco Technology Research Institute, 104 Mabuk-dong, Giheung-gu, Youngin-si, Gyeonggi 446-912, Korea
parkkp@sunchon.ac.kr
Korean Chemical Engineering Research, February 2011, 49(1), 15-20(6), NONE Epub 9 February 2011
Download PDF
Abstract
고분자전해질 연료전지에 유입되는 공기가 톨루엔에 오염되었을 때 전지 성능에 미치는 영향을 여러 톨루엔 농도와 운전 조건에서 연구하였다. 그리고 청정한 공기에 의한 전지 성능 회복과 활성탄 흡착에 의한 공기 중 톨루엔의 제거에 대해서도 연구하였다. 본 연구에서 실험한 톨루엔의 농도 범위는 0.1~5.0 ppm이었고 전지 성능감소와 회복은 일정 전류에서 전압변화 측정법과 전기화학적 임피던스 측정법 (EIS)에 의해 측정하였다. KOH 첨착활성탄의 톨루엔 흡착용량은 등온흡착곡선으로 구했다. 톨루엔 농도가 증가할수록, 전류밀도가 증가할수록, 공기유량이 증가할수록 톨루엔 오염에 의한 성능감소가 심했다. 그러나 상대습도가 증가할수록 톨루엔 오염에 의한 성능감소는 작았다. 가습된 청정 공기 중의 산소와 수분에 의한 톨루엔의 산화에 의해 전지의 성능이 회복되었다. 톨루엔의 백금 표면 흡착에 의한 전하 전달 저항 증가가 전지 성능을 주로 감소시킴을 EIS가 보였다. 첨착활성탄의 톨루엔 흡착 용량은 KOH 첨착량이 증가할수록 감소하였다.
The contamination effect of toluene in the airstream on PEM fuel cell performance was studied with various toluene concentration under different operation conditions. And the recovery of the cell performance by applying clean air and the removal of toluene in the air by adsorption of active carbon were investigated. The toluene concentration range used in the experiments was from 0.1 ppm to 5.0 ppm. The performance degradation and recovery were measured by constant-current discharging and electrochemical impedance spectroscopy(EIS). Toluene adsorption capacity of KOH impregnated active carbon was obtained from the adsorption isotherm curve. The severity of the contamination increased with increasing toluene concentration, current density and air stoichiometry, but decrease with increasing relative humidity. The cell performance was recovered by toluene oxidation with oxygen and water in humidified neat air._x000D_
EIS showed that the increase of charge transfer resistance due to toluene adsorption on Pt surface mainly reduced the performance of PEMFC. Toluene adsorption capacity of active carbon decreased as KOH weight increased in KOH impregnated active carbon.
References
Mohtadi R, Lee WK, Van Zee JW, J. Power Sources, 138(1-2), 216 (2004)
Moore JM, Adcock PL, Lakeman JB, Mepsted GO, J. Power Sources, 85(2), 254 (2000)
Nagahara Y, Sugawara S, Shinohara K, J. Power Sources, 182(2), 422 (2008)
Jing FN, Hou M, Shi WY, Fu J, Yu HM, Ming PW, Yi BL, J. Power Sources, 166(1), 172 (2007)
Uribe F, Smith W, Wilson M, Valerio J, Rockward T, Garzon F, Havrilla G, Hydrogen Fuel Cells and Infrastructure Technologies, FY 2003 Progress Report.
Gould BD, Baturina OA, Swider-Lyons KE, J. Power Sources, 188(1), 89 (2009)
Loucka T, J. Electroanal. Chem., 31, 319 (1971)
Li H, Zhang JL, Fatih K, Wang ZW, Tang YH, Shi Z, Wu SH, Song DT, Zhang JJ, Jia NY, Wessel S, Abouatallah R, Joos N, J. Power Sources, 185(1), 272 (2008)
Marsh AL, Burnett DJ, Fischer DA, Gland JL, J. Phys. Chem. B, 108(2), 605 (2004)
Li H, Zhang JL, Shi Z, Song DT, Fatih K, Wu SH, Wang HJ, Zhang JJ, Jia NY, Wessel S, Abouatallah R, Joos N, J. Electrochem. Soc., 156(2), B252 (2009)
Li H, Tang YH, Wang ZW, Shi Z, Wu SH, Song DT, Zhang JL, Fatih K, Zhang JJ, Wang HJ, Liu ZS, Abouatallah R, Mazza A, J. Power Sources, 178(1), 103 (2008)
Shi Z, Song DT, Li H, Fatih K, Tang YH, Zhang JL, Wang ZW, Wu SH, Liu ZS, Wang HJ, Zhang JJ, J. Power Sources, 186(2), 435 (2009)
Li H, Gazzarri J, Tsay K, Wu SH, Wang HJ, Zhang JJ, Wessel S, Abouatallah R, Joos N, Schrooten J, Electrochim. Acta, 55(20), 5823 (2010)
Moore JM, Adcock PL, Lakeman JB, Mepsted GO, J. Power Sources, 85(2), 254 (2000)
Nagahara Y, Sugawara S, Shinohara K, J. Power Sources, 182(2), 422 (2008)
Jing FN, Hou M, Shi WY, Fu J, Yu HM, Ming PW, Yi BL, J. Power Sources, 166(1), 172 (2007)
Uribe F, Smith W, Wilson M, Valerio J, Rockward T, Garzon F, Havrilla G, Hydrogen Fuel Cells and Infrastructure Technologies, FY 2003 Progress Report.
Gould BD, Baturina OA, Swider-Lyons KE, J. Power Sources, 188(1), 89 (2009)
Loucka T, J. Electroanal. Chem., 31, 319 (1971)
Li H, Zhang JL, Fatih K, Wang ZW, Tang YH, Shi Z, Wu SH, Song DT, Zhang JJ, Jia NY, Wessel S, Abouatallah R, Joos N, J. Power Sources, 185(1), 272 (2008)
Marsh AL, Burnett DJ, Fischer DA, Gland JL, J. Phys. Chem. B, 108(2), 605 (2004)
Li H, Zhang JL, Shi Z, Song DT, Fatih K, Wu SH, Wang HJ, Zhang JJ, Jia NY, Wessel S, Abouatallah R, Joos N, J. Electrochem. Soc., 156(2), B252 (2009)
Li H, Tang YH, Wang ZW, Shi Z, Wu SH, Song DT, Zhang JL, Fatih K, Zhang JJ, Wang HJ, Liu ZS, Abouatallah R, Mazza A, J. Power Sources, 178(1), 103 (2008)
Shi Z, Song DT, Li H, Fatih K, Tang YH, Zhang JL, Wang ZW, Wu SH, Liu ZS, Wang HJ, Zhang JJ, J. Power Sources, 186(2), 435 (2009)
Li H, Gazzarri J, Tsay K, Wu SH, Wang HJ, Zhang JJ, Wessel S, Abouatallah R, Joos N, Schrooten J, Electrochim. Acta, 55(20), 5823 (2010)