ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 6, 2010
Accepted February 7, 2011
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

CO2 및 CO2-O2 시스템에서 알카놀아민류 흡수제를 이용한 CO2 흡수 및 흡수제 열화 특성

Characteristics of CO2 Absorption and Degradation of Aqueous Alkanolamine Solutions in CO2 and CO2-O2 System

두산중공업 연료전지시스템개발팀, 305-811 대전광역시 유성구 전민동 463-1 1한국에너지기술연구원 온실가스연구단, 305-343 대전광역시 유성구 장동 71-2
Fuel Cell System Development Team, Doosan Heavy Industries & Construction, 463-1, Jeonmin-dong, Yuseong-gu, Daejeon 305-811, Korea 1Greenhouse Gas Research Center, Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343, Korea
bmmin@kier.re.kr
Korean Chemical Engineering Research, April 2011, 49(2), 256-262(7), NONE Epub 12 April 2011
downloadDownload PDF

Abstract

아민 흡수 공정에서 아민은 O2 및 고온에 의해 비가역반응을 일으키며, 이러한 현상을 열화반응이라 한다. 열화반응은 아민의 가치를 떨어뜨릴 뿐만 아니라 부식, fouling과 같은 문제를 일으킨다. 따라서, 본 연구에서는 여러가지 화학흡수제(MEA; monoethanolamine, AMP; 2-amino-2-methyl-propanol, DAM; 1,8-diamino-p-menthane)를 이용하여 i) 50, 120 ℃에서의 흡수평형, ii) CO2 및 CO2/O2 계에서 흡수제의 열화에 따른 농도변화 및 초기열화속도상수, iii) 산소(O2)에 의한 열화 영향을 살펴보았다. DAM은 흡수영역에서 MEA와 AMP에 비해 400~270% 높은 흡수평형부하를 보이며, MEA나 AMP에 비해 흡수/재생영역에서 흡수평형부하가 커 흡수능이 우수하였다. CO2계에서 DAM의 초기열화속도상수는 2.254×10^(-4) cycle^(-1)로 MEA와 AMP의 2.761×10^(-4) cycle^(-1), 2.416×10^(-4) cycle^(-1)에 비해 작아 열화가 늦게 진행되며, O2 주입시 초기열화속도상수는 1.3배 증가하여 2배 증가한 MEA보다 열화 영향이 적었다. 이러한, 일련의 열화반응은 GC chromatogram에서 새로운 peak의 생성과 FT-IR spectrum 분석을 통하여 확인할 수 있었다.
Amine can undergo irreversible reactions by O2 and high temperature in amine scrubbing process and these phenomena are called “degradation”. Degradation causes not only a loss of valuable amine, but also operational problems such as foaming, corrosion and fouling. In this study, using various chemical absorbents(MEA; monoethanolamine, AMP; 2-amino-2-methyl-1-propanol, DAM; 1,8-diamino-p-menthane), we examined the following variable. i) loading ratio of CO2 at 50 ℃ and 120 ℃, ii) concentration variation and initial degradation rate constant of absorbent in CO2 and CO2/O2 system, and iii) effect of degradation by O2. The CO2 loading of 20 wt% DAM was 400% and 270% higher than that of 20 wt% MEA and AMP at 50, respectively and was the largest the difference of CO2 loading between absorption (50 ℃) and regeneration (120℃) condition. The initial degradation rate constant of 20 wt% DAM was 2.254×10^(-4) cycle^(-1) which was slower than that of MEA (2.761×10^(-4) cycle^(-1) and AMP (2.416×10^(-4) cycle^(-1) in CO2 system. Also, it was increased 30% by O2 that effects on the degradation by O2 was less than 100% increased. these degradation reactions was able to identify by formation of new peak in GC and FT-IR spectrum analysis.

References

Min BM, Korean Ind. Chem. News, “Status of CO2 Capturing Technologies in Post Combustion", 12(1), 15 (2009)
Morimoto S, Taki K, Maruyama T, “Current Review of CO2 Separation and Recovery Technologies,” Oct. 5, RITE (2002)
Kim JH, Lee JH, Jang KR, Shim JG, J. Kor. Soc. Environ. Eng., “Degradation Characteristics of Carbon Dioxide Absorbents with Different Chemical Structures”, 31, 883 (2009)
Kennard ML, Meisen A, Ind. Eng. Chem. Fundam., “Mechanisms and Kinetics of DEA Degradation", 24, 129 (1985)
Chakma A, Meisen A, J. Chromatogr., “Identification of Methyldiethanolamine Degradation Products by Gas Chromatography and Gas Chromatography-mass Spectrometry,”, 457, 297 (1988)
Choi WJ, Lee JJ, Cho KC, Oh KJ, J. Kor. Soc. Environ. Eng., “Degradation Characteristics of Aqueous AMP Solution Containing Addit in Separation of CO2/H2S”, 27, 280 (2005)
Xu S, Wang YW, Otto FD, Mather AE, Chem. Eng. Process., “Representation Of Equilibrium Solubility Properties Of Co2 With aqueous solutions of 2-amino-2-methyl-1-propano", 31, 7 (1992)
Caplow M, J. Am. Chem. Soc., “Kinetics of Carbamate Formation and Breakdown,”, 90, 6795 (1968)
Polderman LD, Steele AB, Oil Gas J., “Why Diethanolamine Breakdown in Gas Treating Service", 54, 206 (1956)
Kennard, ML, “Degradation of Diethanolamine Solutions,” Ph.D. Thesis, Univ. of British Columbia (1983)
Bello A, Idem RO, Ind. Eng. Chem. Res., “Pathways for the Formation of Products of the Oxidative Degradation of CO2-loaded Concentrated Aqueous Monoethanolamine Solutions During CO2 Absorption from Flue Gases", 44(4), 945 (2005)
Rooney PC, Dupart MS, Bacon TR, Hydrocarb. Process, Int. Ed., “Oxygen’s Role in Alkanolamine Degradation", 109 (1998)
Dennis WH, Hull LA, Rosenblatt DH, J. Org. Chem., “Oxidation of Amines. IV. Oxidative Degradation”, 32, 3783 (1967)
Chi S, Rochelle GT, Ind. Eng. Chem. Res., “Oxidative Degradation of Monoethanolamine", 41(17), 4178 (2002)
Cho Y, Nam SC, Yoon YI, Moon S, Baek IH, Appl. Chem. Eng., “Degradation of Aqueous Monoethanolamine Absorbent", 21(2), 195 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로