Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 3, 2010
Accepted December 9, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
실리콘 나노리본을 이용한 유연한 패시브 매트릭스 소자 제작
Fabrication of Flexible Passive Matrix by Using Silicon Nano-ribbon
고려대학교 화공생명공학과, 136-713 서울특별시 성북구 안암동 5가
Chemical and Biological Engineering, Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea
jeongsha@korea.ac.kr
Korean Chemical Engineering Research, June 2011, 49(3), 338-341(4), NONE Epub 8 June 2011
Download PDF
Abstract
대표적인 반도체 소재인 실리콘을 유연소자로 이용하기 위하여 매우 얇은 나노리본 형태로 제작하였다. p-타입과 n-타입 도핑 그리고 고유한 영역으로 구성된 실리콘 소자(p-i-n 접합소자)를 가로/세로 100라인씩 연결하여 총 10,000개의 어레이 소자를 구현하였고 그 크기는 대각선 1인치에 달했다. 이 패시브 매트릭스 소자는 p-n 접합 소자에 비해 교차 혼선에 의한 역전류가 적어 정류비가 104 이상의 값을 나타내었다. 완성된 소자는 불산 처리를 통해 기판으로부터 쉽게 떼어낼 수 있으며, 각각 PDMS 와 유연한 PET 필름에 전이할 수 있었다.
Thin silicon ribbon was used for fabricating flexible silicon p-i-n junction devices, consisting of 100×100 arrays of pixels in 1 inch on the diagonal. Those passive matrix devices exhibited the rectification ratio >104 owing to smaller cross-talking current than that of p-n junction devices. P-i-n devices fabricated on silica/silicon substrates are easily detached by treatment with hydrofluoric acid and are subsequently transferred onto both PDMS and flexible PET film.
References
Armini AJ, Bunker SN, Spitzer MB, “Non-mass-analyzed Ion Implantation Equipment for high Volume Solar Cell Production,” Proc. 16th IEEE Photovoltaic Specialists Conference, 895 (1982)
Sirringhaus H, Ando M, MRS Bull., “Materials Challenges and Applications of Solution-processed Organic Field-effect Transistors”, 33, 676 (2008)
Lodha A, Singh R, IEEE Trans. Semicond. Manuf., “Prospects of Manufacturing Organic Semiconductor-based Integrated Circuits", 14, 281 (2001)
Klauk H, Halik M, Zschieschang U, Eder F, Schmid G, Dehm C, Appl. Phys. Lett., “Pentacene Organic Transistors and Ring Oscillators on Glass and on Flexible Polymeric Substrates", 82, 4175 (2003)
Klauk H, Zschieschang U, Pflaum J, Halik M, Nature., “Ultralowpower Organic Complementary Circuits", 445, 745 (2007)
Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T, Someya T, Science., “Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays", 326, 1516 (2009)
Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song J, Huang YY, Zhuangjian L, Chun L, Rogers JA, Science., “Stretchable and Foldable Silicon Integrated Circuits”, 320, 507 (2008)
Sirringhaus H, Ando M, MRS Bull., “Materials Challenges and Applications of Solution-processed Organic Field-effect Transistors”, 33, 676 (2008)
Lodha A, Singh R, IEEE Trans. Semicond. Manuf., “Prospects of Manufacturing Organic Semiconductor-based Integrated Circuits", 14, 281 (2001)
Klauk H, Halik M, Zschieschang U, Eder F, Schmid G, Dehm C, Appl. Phys. Lett., “Pentacene Organic Transistors and Ring Oscillators on Glass and on Flexible Polymeric Substrates", 82, 4175 (2003)
Klauk H, Zschieschang U, Pflaum J, Halik M, Nature., “Ultralowpower Organic Complementary Circuits", 445, 745 (2007)
Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T, Someya T, Science., “Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays", 326, 1516 (2009)
Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song J, Huang YY, Zhuangjian L, Chun L, Rogers JA, Science., “Stretchable and Foldable Silicon Integrated Circuits”, 320, 507 (2008)