Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 29, 2010
Accepted December 30, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
폴리에틸렌 이민과 혼합된 PEO 복합체 전해질의 이온 전도도에 미치는 실리카 필러 첨가 효과
Silica Filler Addition Effect on the Ion Conductivity of PEO Composite Electrolytes Blended with Poly(ethylene imine)
부산대학교 화공생명공학부, 609-735 부산시 금정구 장전동 산30 1한국전자통신연구원 융합부품소재연구부문 전력제어소자팀, 305-700 대전시 유성구 과학로 138 2한국기술교육대학교 응용화학공학과, 330-708 충청남도 천안시 병천면 가전리 307
Department of Chemical and Biochemical Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Korea 1Research Team of Power Control Devices, Electronics and Telecommunications Research Institute, 138 Gwahak-ro, Yuseong-gu, Daejon 305-700, Korea 2Department of Applied Chemical Engineering, Korea University of Technology and Education, 307, Gajeon-ri, Byeongcheon-myeon, Cheonan-si, Chungnam 330-708, Korea
seokkim@pusan.ac.kr
Korean Chemical Engineering Research, August 2011, 49(4), 465-469(5), NONE Epub 3 August 2011
Download PDF
Abstract
본 연구는 이온전도도와 계면 특성을 향상시키기 위해 PEO, poly(ethylene oxide)와 PEI, poly(ethylenimine)의 블렌드에 무기 필러인 실리카를 첨가한 고분자 전해질을 조사하였다. 리튬염으로 LiClO4를 사용하고 무기 필러로서 실리카(SiO2)를 고분자 복합체 전해질에 첨가해서 전해질 응용 가능성 측정을 위해 AC임피던스법을 이용하여 이온전도도를 측정하였다. 임피던스 측정에서 무기 필러의 첨가량이 증가함에 따라 반원의 크기가 점점 감소하는 것은, 이온전도도가 첨가량이 20 wt%가 될 때까지 증가하는 경향을 보여주었다. 하지만, 첨가량이 20 wt% 이상이 되었을 때는 앞서 측정한 이온전도도와 큰 차이가 없어 무기 필러가 포화 상태가 됨을 알 수 있었다. XRD 분석을 이용하여 PEO의 회절 피크가 감소함을 알 수 있었는데, 무기 필러의 첨가로 인해 결정화도가 감소됨을 알 수 있었다. 전해질 막의 형태학 구조 변화를 알아보기 위해 SEM 분석을 이용하였는데, 실리카 함량이 높을 때, 더 비균일한 형태학적 구조, 즉 실리카가 강한 결착력을 지니는 PEI로 인해 고르게 분산되어 있는 형태를 보였다.
In this study, poly(ethyleneoxide) and poly(ethylene imine) polymer blends containing fumed silica fillers were studied in order to enhance the ion conductivity and interfacial properties. Lithium perchlorate (LiClO4) as a salt, and silica(SiO2) as the inorganic filler were introduced into the polymer composite electrolyte composites and the composites were examined to evaluate their ionic conductivity for a possibility test of electrolyte application. As the diameter of semicircle in an impedance test became smaller, ionic conductivity of composite electrolytes had been enhanced by addition of 20 wt% silica filler. However, the conductivity was not greatly changed over 20 wt% content because the silica was sufficiently saturated in the polymer electrolytes. Diffraction peaks of PEO became weaker with the addition of inorganic fillers using XRD analysis. It showed that a crystallinity was proportionally reduced by increasing filler contents. The morphology of composite electrolyte films has been investigated by SEM. The heterogeneous morphology which silica was evenly dispersed by the strong adhesion of PEI was shown at higher contents of silica.
References
van Schalkwijk WA, Scrosati B, “Advances in Lithium-Ion Batteries,” Kluwer Academic, New York (2002)
Nazri GA, Pistoia G, “Lithium Batteries,” Kluwer Academic, New York (2004)
Fonseca CP, Rosa DS, Gaboardi F, Neves S, J. Power Sources, 155(2), 381 (2006)
Dias FB, Plomp L, Veldhuis JBJ, J. Power Sources, 88(2), 169 (2000)
Meyer WH, Adv. Mater., 10(6), 439 (1998)
Song JY, Wang YY, Wan CC, J. Power Sources, 77(2), 183 (1999)
Fenton DE, Parker JM, Wright PV, Polymer., 14, 589 (1973)
Appetecchi GB, Shin JH, Alessandrini F, Passerini S, J. Power Sources, 143(1-2), 236 (2005)
Kim DW, J. Power Sources, 87(1-2), 78 (2000)
Tarascon JM, Armand MB, Nature., 414, 359 (2001)
Gray FM, “Polymer Eleetrolytes,” Royal Society of Chemistry, Cambridge (1997)
Croce F, Appetecchi GB, Persi L, Scrosati B, Nature., 394, 456 (1998)
Kim SC, Oh TH, Kim DW, Lee CJ, Kang YK, Macromol. Res., 17(3), 141 (2009)
Dissanayake MAKL, Jayathilaka PARD, Bokalawala RSP, Albinsson I, Mellandar BE, J. Power Sources., 409, 119 (2003)
Krejza O, Velicka J, Sedlarikova M, Vondrak J, J. Power Sources, 178(2), 774 (2008)
Kumar B, Scanlon LG, Solid State Ion., 124(3-4), 239 (1999)
Jeon JD, Kim MJ, Kwak SY, J. Power Sources, 162(2), 1304 (2006)
Aravindan V, Vickraman P, Krishnaraj K, Curr. Appl. Phys., 9, 1474 (2009)
Shin JH, Alessandrini F, Passerini S, J. Electrochem. Soc., 152(2), A283 (2005)
Stephan AM, Nahm KS, Polymer, 47(16), 5952 (2006)
Shukla AK, Kumar TP, Curr. Sci., 94, 314 (2008)
Chang CK, Davis GT, Harding CA, Takahashi T, Solid State Ionics., 18, 300 (1986)
Tanaka R, Fujita T, Nishibayashi H, Saito S, Solid State Ionics., 60, 119 (1993)
Rey I, Bruneel JL, Grondin J, Servant L, Lassegues JC, J. Electrochem. Soc., 145(9), 3034 (1998)
Kim S, Hwang EJ, Lee JR, Kim HI, Park SJ, Polym.(Korea), 31(4), 297 (2007)
Park MK, Kim HS, An JH, Kim J, J. Ind. Eng. Chem., 11(2), 222 (2005)
Kim S, Park SJ, J. Colloid Interface Sci., 332(1), 145 (2009)
Kim S, Park SJ, Electrochim. Acta, 52(11), 3477 (2007)
Nazri GA, Pistoia G, “Lithium Batteries,” Kluwer Academic, New York (2004)
Fonseca CP, Rosa DS, Gaboardi F, Neves S, J. Power Sources, 155(2), 381 (2006)
Dias FB, Plomp L, Veldhuis JBJ, J. Power Sources, 88(2), 169 (2000)
Meyer WH, Adv. Mater., 10(6), 439 (1998)
Song JY, Wang YY, Wan CC, J. Power Sources, 77(2), 183 (1999)
Fenton DE, Parker JM, Wright PV, Polymer., 14, 589 (1973)
Appetecchi GB, Shin JH, Alessandrini F, Passerini S, J. Power Sources, 143(1-2), 236 (2005)
Kim DW, J. Power Sources, 87(1-2), 78 (2000)
Tarascon JM, Armand MB, Nature., 414, 359 (2001)
Gray FM, “Polymer Eleetrolytes,” Royal Society of Chemistry, Cambridge (1997)
Croce F, Appetecchi GB, Persi L, Scrosati B, Nature., 394, 456 (1998)
Kim SC, Oh TH, Kim DW, Lee CJ, Kang YK, Macromol. Res., 17(3), 141 (2009)
Dissanayake MAKL, Jayathilaka PARD, Bokalawala RSP, Albinsson I, Mellandar BE, J. Power Sources., 409, 119 (2003)
Krejza O, Velicka J, Sedlarikova M, Vondrak J, J. Power Sources, 178(2), 774 (2008)
Kumar B, Scanlon LG, Solid State Ion., 124(3-4), 239 (1999)
Jeon JD, Kim MJ, Kwak SY, J. Power Sources, 162(2), 1304 (2006)
Aravindan V, Vickraman P, Krishnaraj K, Curr. Appl. Phys., 9, 1474 (2009)
Shin JH, Alessandrini F, Passerini S, J. Electrochem. Soc., 152(2), A283 (2005)
Stephan AM, Nahm KS, Polymer, 47(16), 5952 (2006)
Shukla AK, Kumar TP, Curr. Sci., 94, 314 (2008)
Chang CK, Davis GT, Harding CA, Takahashi T, Solid State Ionics., 18, 300 (1986)
Tanaka R, Fujita T, Nishibayashi H, Saito S, Solid State Ionics., 60, 119 (1993)
Rey I, Bruneel JL, Grondin J, Servant L, Lassegues JC, J. Electrochem. Soc., 145(9), 3034 (1998)
Kim S, Hwang EJ, Lee JR, Kim HI, Park SJ, Polym.(Korea), 31(4), 297 (2007)
Park MK, Kim HS, An JH, Kim J, J. Ind. Eng. Chem., 11(2), 222 (2005)
Kim S, Park SJ, J. Colloid Interface Sci., 332(1), 145 (2009)
Kim S, Park SJ, Electrochim. Acta, 52(11), 3477 (2007)