Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 18, 2010
Accepted December 21, 2010
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
1 Nm3/h 규모 합성천연가스(SNG) 합성 시스템의 운전 특성
Operating Characteristics of 1 Nm3/h Scale Synthetic Natural Gas(SNG) Synthetic Systems
Jin-Ho Kim
Suk-Hwan Kang
Jae-Hong Ryu
Sun-Ki Lee
Su-Hyun Kim
Mun-Hyun Kim
Do-Yeon Lee
Yong-don Yoo†
Chang-dae Byun1
Hyo-jun Lim1
고등기술연구원 플랜트엔지니어링센터, 449-863 경기도 용인시 처인구 백암면 고안리 633-2 1포스코, 135-777 서울시 강남구 대치 4동 892
Plant Engineering Center, Institute for Advances Engineering, 633-2 Baegam-myeon, Yongin-si, Gyeonggi 449-863, Korea 1POSCO Center, 892 Daechi4-dong, Gangnam-gu, 135-777 Seoul, Korea
Korean Chemical Engineering Research, August 2011, 49(4), 491-497(7), NONE Epub 3 August 2011
Download PDF
Abstract
본 연구에서는 CO, H2가 주성분인 모사합성가스를 이용하여 합성천연가스(SNG, Synthetic Natural Gas) 제조공정을 평가하기 위하여, 3종류의 SNG 합성반응시스템을 제안하였다. 제시된 공정은 다단 단열반응시스템, 재순환이 있는 다단 단열반응시스템 그리고 강제냉각방식의 수냉각반응시스템이다. 3개의 연속된 반응기로 구성된 다단 단열반응시스템에서의 1차반응기에서는 온도가 최대 800 ℃까지 상승하였으며, 이로 인한 수성가스전환반응으로 인해 CO2가 다른 시스템에 비해 많이 생성되었으며, SNG 내의 CH4 농도는 90.1% 정도를 얻었다. 다단 단열반응시스템의 문제점을 해결하기 위해 재순환이 있는 다단 단열반응시스템에서는 반응기의 온도제어를 위해 일부 전환가스를 재순환한 것으로, CH4는 최대 96.3%를 얻었다. 이러한 다수개의 반응기로 구성된 단열반응기의 단점을 해결하여 반응기 개수를 줄일 수 있는 쉘과 튜브 형태의 반응기로 구성된 강제냉각방식의 수냉각시스템에서는 쉘 측으로 냉각수를 공급하여 반응열을 흡수하는 형태로, 공급되는 냉각수의 유량과 압력에 의해 온도를 제어할 수 있다. 이 시스템에서는 최대 CH4는 최대 99.2%를 얻었으며, 1차 반응기인 강제냉각방식의 수냉각반응기 출구에서의 97% 이상의 CH4 농도를 얻을 수 있음을 확인하였다.
In this work, we proposed the three different reactor systems for evaluating of synthetic natural gas(SNG) processes using the synthesis gas consisting of CO and H2 and reactor systems to be considered are series adiabatic reaction system, series adiabatic reaction system with the recirculation and cooling wall type reaction system. The maximum temperature of the first adiabatic reactor in series adiabatic reaction system raised to 800. From the these results, carbon dioxide in product gas as compared to other systems was increased more than that expected due to water gas shift reaction(WGSR) and the maximum CH4 concentration in SNG was 90.1%. In series adiabatic reaction system with the recirculation as a way to decrease the temperature in catalyst bed, the maximum CH4 concentration in SNG was 96.3%. In cooling wall type reaction system, the reaction heat is absorbed by boiling water in the shell and the reaction temperature_x000D_
is controlled by controlling the amount of flow rate and pressure of feed water. The maximum CH4 concentration in SNG for cooling wall type reaction system was 97.9%. The main advantage of the cooling wall type reaction system over adiabatic systems is that potentially it can be achieve almost complete methanation in one reactor.
References
Nagase S, Takami S, Hirayama A, Hirai Y, Catal. Today, 45(1-4), 393 (1998)
NETL, A Current Perspective On the Gasification Industry, . (2005)
Kopyscinski J, Schildhauer TJ, Biollaz SMA, Fuel., 89, 1763 (2010)
Gassner M, Marechal F, Biomass Bioenerg., 33(11), 1587 (2009)
Kang SH, Bae JW, Sai Prasad PS, Oh JH, Jun KW, Song SL, Min KS, J. Ind. Eng. Chem., 15(5), 665 (2009)
Kang SH, Woo KJ, Bae JW, Jun KW, Kang Y, Korean J. Chem. Eng., 26(6), 1533 (2009)
Hoehlein B, Menzer R, Range J, Appl Catal., 1, 125 (1981)
Haldor Topsoe, From coal to substitute natural gas using TREMP,Technical report, Haldor Topsoe (2008)
Lohmueller R, Linde.Berichte aus Technik und Wissenschaft, 41, 3 (1977)
Yoo YD, Kim SH, Yun YS, Jin GT, Korean Ind. Chem. News, 12(3), 38 (2009)
Seglin L, Methanation of Synthesis Gas, American Chemical Sociaty (1974)
Twigg MV, Catalyst handbook, Wolfe Publishing Ltd. (1989)
de Deugd RM, Kapteijn F, Moulijn JA, Top. Catal., 26, 29 (2003)
Davis BH, Top. Catal., 32, 143 (2005)
Bartholomew CH, Catal. Rev., 24, 67 (1982)
NETL, A Current Perspective On the Gasification Industry, . (2005)
Kopyscinski J, Schildhauer TJ, Biollaz SMA, Fuel., 89, 1763 (2010)
Gassner M, Marechal F, Biomass Bioenerg., 33(11), 1587 (2009)
Kang SH, Bae JW, Sai Prasad PS, Oh JH, Jun KW, Song SL, Min KS, J. Ind. Eng. Chem., 15(5), 665 (2009)
Kang SH, Woo KJ, Bae JW, Jun KW, Kang Y, Korean J. Chem. Eng., 26(6), 1533 (2009)
Hoehlein B, Menzer R, Range J, Appl Catal., 1, 125 (1981)
Haldor Topsoe, From coal to substitute natural gas using TREMP,Technical report, Haldor Topsoe (2008)
Lohmueller R, Linde.Berichte aus Technik und Wissenschaft, 41, 3 (1977)
Yoo YD, Kim SH, Yun YS, Jin GT, Korean Ind. Chem. News, 12(3), 38 (2009)
Seglin L, Methanation of Synthesis Gas, American Chemical Sociaty (1974)
Twigg MV, Catalyst handbook, Wolfe Publishing Ltd. (1989)
de Deugd RM, Kapteijn F, Moulijn JA, Top. Catal., 26, 29 (2003)
Davis BH, Top. Catal., 32, 143 (2005)
Bartholomew CH, Catal. Rev., 24, 67 (1982)