Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 22, 2010
Accepted January 27, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
MWW와 MFI 제올라이트에서 메탄올의 올레핀으로 전환 반응: 세공 구조가 생성물 분포와 촉매의 활성 저하에 미치는 영향
Methanol-to-Olefin Reaction over MWW and MFI Zeolites: Effect of Pore Structure on Product Distribution and Catalyst Deactivation
전남대학교 응용화학공학부, 500-757 광주광역시 북구 용봉동 300 1충북대학교 화학공학과, 361-763 충청북도 청주시 흥덕구 성봉로 410
School of Applied Chemical Engineering and the Institute for Catalysis Research, Chonnam National University, 300 Youngbong-dong, Buk-gu, Gwangju 500-757, Korea 1Department of Chemical Engineering, Chungbuk National University, 410 Sungbong-ro, Heungduk-gu, Cheongju-si, Chungbuk 361-763, Korea
gseo@chonnam.ac.kr
Korean Chemical Engineering Research, October 2011, 49(5), 521-529(9), NONE Epub 30 September 2011
Download PDF
Abstract
원형 세공과 선형 세공이 독립적으로 발달한 MWW와 구부러진 세공과 선형 세공이 서로 교차하는 MFI 제올라이트에서 세공 구조가 메탄올의 저급 올레핀으로 전환(MTO) 반응에서 생성물 분포와 활성 저하에 미치는 영향을 조사하였다. 산성도가 비슷한 MWW와 MFI 제올라이트는 MTO 반응에서 전환율이 높고 활성 저하가 느린 점이 서로 비슷하지만, MWW에서는 C3-C9의 선형 탄화수소가 많이 생성되나 MFI에서는 C2=와 방향족 화합물의 수율이 높았다. MTO 반응 중 MWW에는 다고리 방향족 화합물(PAHs)이 많이 축적되나 MFI에서는 벤젠과 나프탈렌 유도체만 생성되었다. MFI와 달리 MWW에 인을 담지하면 MTO 반응에서 촉매 활성과 톨루엔의 흡착량이 크게 줄었다. MWW의 선형 세공에는 MTO 반응 중 PAHs가 축적되어 활성이 없어지나 PAHs가 생성되지 않은 원형 세공에서 선형 탄화수소가 생성된다. 그러나 원형 세공에 인이 담지되면 세공이 막혀 활성이 크게 줄어든다. MFI에는 세공 교차 부분에 인_x000D_
이 담지되어 강한 산점이 중화되어 생성물 분포는 달라지나 활성은 저하되지 않았다. 세공 구조의 차이로 MTO 반응에서 MWW와 MFI의 촉매로서 거동 차이를 설명하였다.
Methanol-to-olefin (MTO) reaction was studied over MWW zeolite with independently developed two pores (circular and straight) and MFI zeolite with intercrossed sinusoidal and straight pores in order to investigate the effect of pore structure on their catalytic behavior. MWW and MFI zeolites with similar acidity exhibited commonly high conversion and slow deactivation in the MTO reaction, but their product selectivities were considerably different: linear hydrocarbons of C3-C9 were mainly produced on MWW, while the yield of C2= and aromatics were high on MFI._x000D_
Polyaroamatic hydrocarbons (PAHs) were accumulated on MWW, but a small amount of benzene and aromatics on MFI. The impregnation of phosphorous on MWW caused significant decreases in the catalytic activity and toluene adsorption, but the decreases were relatively small on MFI. Although the straight pores of MWW were inactive in the MTO reaction due to the accumulation of PAHs, its circular pores which suppressed the formation of PAHs sustained catalytic activity for the production of linear hydrocarbons. Therefore, the impregnation of phosphorous on the circular pores of MWW caused a significant decrease in catalytic activity. The phosphorous impregnation on the cross sections of MFI altered the product selectivity due to the neutralization of strong acid sites, but catalytic deactivation was negligible. The difference of MWW and MFI zeolites in the MTO reaction was explained by their difference in pore structure.
Keywords
References
Park YK, Jeon JY, Han SY, Kim JR, Lee CW, HWAHAK KONGHAK, 41(5), 549 (2003)
Twofighi J, Zimmermann H, Karimzadeh R, Akbarnejad MM, Ind. Eng. Chem. Res., 41(6), 1419 (2002)
Park JY, Lee YJ, Jun KW, Bae JW, Viswanadham N, Kim YH, J. Ind. Eng. Chem., 15(6), 847 (2009)
Karimi A, Ahmadi R, Bozorg Zadeh HR, Jebreili Jolodar A, Barkhordarion A, Petroleum & Coal., 49, 36 (2007)
Dubois DR, Obrzut DL, Liu J, Thundimadathil J, Adekkanattu PM, Guin JA, Punnoose A, Seehra MS, Fuel Process. Technol., 83(1-3), 203 (2003)
Park JW, Lee JY, Kim KS, Hong SB, Seo G, Appl. Catal. A: Gen., 339(1), 36 (2008)
Chae HJ, Song YH, Jeong KE, Kim CU, Jeong SY, J. Physics Chem. Solids., 71, 600 (2010)
Zhang SH, Zhang BL, Gao ZX, Han YZ, Ind. Eng. Chem. Res., 49(5), 2103 (2010)
Min HK, Park MB, Hong SB, J. Catal., 271(2), 186 (2010)
Liu J, Zhang C, Shen Z, Hua W, Tang Y, Shen W, Yue Y, Xu H, Catal. Commun., 10, 1506 (2009)
Kaarsholm M, Joensen F, Nerlov J, Cenni R, Chaouki J, Patience GS, Chem. Eng. Sci., 62(18-20), 5527 (2007)
Dahl IM, Kolboe S, J. Catal., 149(2), 458 (1994)
Song WG, Haw JF, Nicholas JB, Heneghan CS, J. Am. Chem. Soc., 122(43), 10726 (2000)
Seo G, Min BG, Korean Chem. Eng. Res., 44(4), 329 (2006)
Haw JF, Marcus DM, Top. Catal., 34, 41 (2005)
Park JW, Seo G, Appl. Catal. A: Gen., 356(2), 180 (2009)
Ravishankar R, Bhattacharya D, Jacob NE, Sivasanker S, Microporous. Mater., 4, 83 (1995)
Kim SJ, Park JW, Lee KY, Seo G, Song MK, Jeong SY, J. Nanosci. Nanotechnol., 10, 147 (2010)
Park JW, Kim JH, Seo G, Polym. Degrad. Stab., 76, 495 (2002)
Robson H, Lillerud KP, Verified Syntheses of Zeolitic Materials, 2nd ed., Elesvier, Amsterdam (2001)
Katada N, Igi H, Kim JH, Niwa M, J. Phys. Chem., 101, 5969 (1997)
Rodriguez-Gonzalez L, Hermes F, Bertmer M, Rodriguez-Castellon E, Jimenez-Lopez A, Simon U, Appl. Catal. A: Gen., 328(2), 174 (2007)
Hajjar R, Millot Y, Man PP, Che M, Dzwigaj S, J. Phys. Chem. C., 112, 20167 (2008)
Li HX, Armor JN, Micropor. Mater., 9, 51 (1997)
Liu L, Cheng M, Ma D, Hu G, Pan X, Bao X, Micropor. Mesopor. Mater., 94, 304 (2006)
Fu J, Ding C, Catal. Commun., 6, 770 (2005)
http://www.iza-structure.org/databases/ModelBuilding/MWW.pdf.
Diaz I, Kokkoli E, Terasaki O, Tsapatsis M, Chem. Mater., 16, 5226 (2004)
Twofighi J, Zimmermann H, Karimzadeh R, Akbarnejad MM, Ind. Eng. Chem. Res., 41(6), 1419 (2002)
Park JY, Lee YJ, Jun KW, Bae JW, Viswanadham N, Kim YH, J. Ind. Eng. Chem., 15(6), 847 (2009)
Karimi A, Ahmadi R, Bozorg Zadeh HR, Jebreili Jolodar A, Barkhordarion A, Petroleum & Coal., 49, 36 (2007)
Dubois DR, Obrzut DL, Liu J, Thundimadathil J, Adekkanattu PM, Guin JA, Punnoose A, Seehra MS, Fuel Process. Technol., 83(1-3), 203 (2003)
Park JW, Lee JY, Kim KS, Hong SB, Seo G, Appl. Catal. A: Gen., 339(1), 36 (2008)
Chae HJ, Song YH, Jeong KE, Kim CU, Jeong SY, J. Physics Chem. Solids., 71, 600 (2010)
Zhang SH, Zhang BL, Gao ZX, Han YZ, Ind. Eng. Chem. Res., 49(5), 2103 (2010)
Min HK, Park MB, Hong SB, J. Catal., 271(2), 186 (2010)
Liu J, Zhang C, Shen Z, Hua W, Tang Y, Shen W, Yue Y, Xu H, Catal. Commun., 10, 1506 (2009)
Kaarsholm M, Joensen F, Nerlov J, Cenni R, Chaouki J, Patience GS, Chem. Eng. Sci., 62(18-20), 5527 (2007)
Dahl IM, Kolboe S, J. Catal., 149(2), 458 (1994)
Song WG, Haw JF, Nicholas JB, Heneghan CS, J. Am. Chem. Soc., 122(43), 10726 (2000)
Seo G, Min BG, Korean Chem. Eng. Res., 44(4), 329 (2006)
Haw JF, Marcus DM, Top. Catal., 34, 41 (2005)
Park JW, Seo G, Appl. Catal. A: Gen., 356(2), 180 (2009)
Ravishankar R, Bhattacharya D, Jacob NE, Sivasanker S, Microporous. Mater., 4, 83 (1995)
Kim SJ, Park JW, Lee KY, Seo G, Song MK, Jeong SY, J. Nanosci. Nanotechnol., 10, 147 (2010)
Park JW, Kim JH, Seo G, Polym. Degrad. Stab., 76, 495 (2002)
Robson H, Lillerud KP, Verified Syntheses of Zeolitic Materials, 2nd ed., Elesvier, Amsterdam (2001)
Katada N, Igi H, Kim JH, Niwa M, J. Phys. Chem., 101, 5969 (1997)
Rodriguez-Gonzalez L, Hermes F, Bertmer M, Rodriguez-Castellon E, Jimenez-Lopez A, Simon U, Appl. Catal. A: Gen., 328(2), 174 (2007)
Hajjar R, Millot Y, Man PP, Che M, Dzwigaj S, J. Phys. Chem. C., 112, 20167 (2008)
Li HX, Armor JN, Micropor. Mater., 9, 51 (1997)
Liu L, Cheng M, Ma D, Hu G, Pan X, Bao X, Micropor. Mesopor. Mater., 94, 304 (2006)
Fu J, Ding C, Catal. Commun., 6, 770 (2005)
http://www.iza-structure.org/databases/ModelBuilding/MWW.pdf.
Diaz I, Kokkoli E, Terasaki O, Tsapatsis M, Chem. Mater., 16, 5226 (2004)