Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 19, 2011
Accepted February 24, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
탄소분말이 물리적으로 코팅된 리튬 음전극의 충방전 특성
Charge-Discharge Characteristics of Physically Coated Lithium Anodes by Carbon Powders
한국전자통신연구원 융합부품소재부문 전력제어소자팀, 305-700 대전광역시 유성구 가정로 218 1삼성SDI 원형개발그룹, 331-300 충남 천안시 서북구 성성동 508
Research Team of Power Control Devices, Electronics and Telecommunications Research Institute(ETRI), 218 Gajung-ro, Yuseong-gu, Daejon 305-700, Korea 1Cylindrical Cell Development Group, Samsung SDI, 508 Sungsung-dong, Seobuk-gu, Chonan-si, Korea
kwang@etri.re.kr
Korean Chemical Engineering Research, October 2011, 49(5), 554-559(6), NONE Epub 30 September 2011
Download PDF
Abstract
리튬금속을 음전극으로 사용할 때의 안전성과 전극 특성을 개선하기 위해, 리튬금속 표면에 각기 종류가 다른 3가지의 탄소분말을 리튬금속 표면에 물리적으로 코팅한 전극을 제조하고 이를 리튬 2차전지의 음전극으로 채택하여 충방전 특성을 조사하였다. 일차입자의 입경이 작고 비표면적이 큰 탄소분말로 코팅한 음전극을 채택하는 경우가 충진 밀도가 높고 표면 거칠기가 낮으며, 충방전 특성도 우수하게 나타났다. 이러한 탄소분말 코팅 효과는 소형 셀일수록 더욱 유리하게 나타났다.
To improve the safety and electrode characteristics of lithium metal anode, physically coated electrodes on lithium metal surface by three kinds of carbon are prepared and their charge- discharge performances are investigated by adopting the C-Li electrodes as the anode of rechargeable lithium batteries. The lithium anode coated by the carbon powder with smaller particle size and higher surface area, which has higher packing density and lower surface roughness, shows better performance in charge-discharge characteristics. The carbon coating on lithium surface can be more effective in small-sized cells.
References
Aurbach D, Chusid O, J. Electrochem. Soc., 140, L155 (1993)
Osaka T, Momma T, Matsumoto Y, Uchida Y, J. Electrochem. Soc., 144(5), 1709 (1997)
Besenhard JO, Wagner MW, Winter M, Jannakoudakis AD, Theodoridou E, J. Power Sources., 44, 413 (1993)
Shiraishi S, Kanamura K, Takehara Z, J. Electrochem. Soc., 146(5), 1633 (1999)
Aurbach D, Granot E, Electrochim. Acta, 42(4), 697 (1997)
Matsuda Y, Ishikawa M, Yoshitake S, Morita M, J. Power Sources., 54, 301 (1995)
Kanamura K, Shiraishi S, Takehara Z, J. Electrochem. Soc., 141(9), L108 (1994)
Takehara ZI, Ogumi Z, Uchimoto Y, Yasuda K, Yoshida H, J. Power Sources., 44, 377 (1993)
Liebenow C, Wagner MW, Luhder K, Lobitz P, Besenhard JO, J. Power Sources., 54, 369 (1995)
Choi NS, Lee YM, Park JH, Park JK, J. Power Sources, 119, 610 (2003)
Choi NS, Lee YM, Seol W, Lee JA, Park JK, Solid State Ion., 172(1-4), 19 (2004)
Osaka T, Momma T, Matsumoto Y, Uchida Y, J. Electrochem. Soc., 144(5), 1709 (1997)
Besenhard JO, Wagner MW, Winter M, Jannakoudakis AD, Theodoridou E, J. Power Sources., 44, 413 (1993)
Shiraishi S, Kanamura K, Takehara Z, J. Electrochem. Soc., 146(5), 1633 (1999)
Aurbach D, Granot E, Electrochim. Acta, 42(4), 697 (1997)
Matsuda Y, Ishikawa M, Yoshitake S, Morita M, J. Power Sources., 54, 301 (1995)
Kanamura K, Shiraishi S, Takehara Z, J. Electrochem. Soc., 141(9), L108 (1994)
Takehara ZI, Ogumi Z, Uchimoto Y, Yasuda K, Yoshida H, J. Power Sources., 44, 377 (1993)
Liebenow C, Wagner MW, Luhder K, Lobitz P, Besenhard JO, J. Power Sources., 54, 369 (1995)
Choi NS, Lee YM, Park JH, Park JK, J. Power Sources, 119, 610 (2003)
Choi NS, Lee YM, Seol W, Lee JA, Park JK, Solid State Ion., 172(1-4), 19 (2004)