ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received December 27, 2010
Accepted January 19, 2011
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

모사된 GTL공정의 점성액체 매체에서 wake의 특성

Characteristics of Wakes in a Viscous Liquid Medium of a Simulated GTL Process

충남대학교 화학공학과, 305-764 대전시 유성구 궁동 220 1한국화학연구원 그린화학연구단, 305-600 대전시 유성구 장동 100
School of Chemical Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Korea 1Green Chemical Technology Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Korea
Korean Chemical Engineering Research, October 2011, 49(5), 571-576(6), NONE Epub 30 September 2011
downloadDownload PDF

Abstract

점성 액체를 사용한 모사된 GTL공정(직경 0.102 m × 높이 1.5 m)에서 기포에 의해 발생되는 wake의 특성을 고찰하였다. 기체의 유속(0.04 ~ 0.12 m/s)과 액상의 점도(0.001 ~ 0.050 Pa·s)가 wake의 특성 즉 상승속도, 빈도수, 크기 그리고 체류량에 미치는 영향을 전기저항 탐침법에 의해 결정하였다. 상승하는 단일기포들뿐만 아니라 다중기포의 후면에 형성된 wake 상들도 탐침에 의해 측정된 전기 전도도 요동자료로부터 효과적으로 검침되었다. 유속이 조절되는 압축 여과공기와 CMC 수용액을 각각 분산기체상과 연속액상으로 사용하였다. 실험결과 wake 상의 상승속도와 크기는 기체의 유속 또는 액상의 점도가 증가함에 따라 증가하였다. wake 상의 체류량과 빈도수는 기체의 유속이 증가함에 따라 증가하였는데, 이는 기체유속의 증가에 따라 공정에 유입되는 기체의 양이 증가하기 때문이다. 그러나, 액상의 점도가 증가함에 따라 기포의 크기와 wake의 크기가 증가하기 때문에 wake의 상의 체류량과 빈도수 값은 wake 상의 액상의 점도가 증가함에 따라 감소하였다. Wake 상 체류량의 기체의 체류량에 대한 비율은 0.25~0.48의 범위였으며, 이 비율은 액체점도가 증가함에 따라 증가하였으나 기체의 유속이 증가함에 따라 감소하였다. 본 연구의 실험범위에서 wake 상의 특성들은 운전변수의 상관식으로 잘 나타낼 수 있었다.
Characteristics of bubble driven wakes were investigated in a simulated GTL process(0.102 m × 1.5 m in height) with viscous liquid medium. Effects of gas velocity(0.04 ~ 0.12 m/s) and liquid viscosity(0.001 ~ 0.050 Pa·s) on the wake characteristics such as rising velocity, frequency, size and holdup were determined by employing a resistivity probe method. The wake phase formed behind the rising multi-bubbles as well as single bubbles were detected effectively from the conductivity fluctuations measured by the probe. Compressed, filtered and regulated air and aqueous solutions of Carboxy Methyl Cellulose(CMC) were used as a dispersed gas phase and a continuous liquid medium, respectively. It was found that the rising velocity and size of wake phase increased with an increase in gas velocity or liquid viscosity. The holdup and frequency of wake phase increased with increasing gas velocity due to the increase of gas input into the process with increasing gas velocity. However, the values of holdup and frequency of wake phase decreased with increasing liquid viscosity, since the size of bubbles and thus that of wakes increased with increasing liquid viscosity. The ratio of wake holdup to that of gas phase, which was in the range of 0.25 ~ 0.48, increased with an increase in liquid viscosity but decreased with gas velocity. The wake characteristics were well correlated in terms of operating variables within this experimental conditions.

References

Fan LS, Tsuchiya K, Bubble Dynamics in liquids and liquid-solid suspension, Stoneham, MA, Butherworth Heinemann (1990)
Deckwer WD, Bubble column Reactors, John Wiley and Sons Ltd. (1992)
Krishna R, Sie ST, Fuel Process. Technol., 64(1-3), 73 (2000)
van Baten JM, Ellenberger J, Krishna R, Catal. Today, 79(1-4), 259 (2003)
Cho YJ, Woo KJ, Kang Y, Kim SD, Chem. Eng. Process., 41(8), 699 (2002)
Chen RC, Wang FM, Lin TJ, Chem. Eng. Sci., 54(21), 4831 (1999)
Li Y, Zhang JP, Fan LS, Chem. Eng. Sci., 54(21), 5101 (1999)
Tsuchiya K, Fan LS, Chem. Eng. Sci., 43, 1167 (1988)
Kitano K, Fan LS, Chem. Eng. Sci., 43, 1355 (1988)
Katz J, Meneveau C, Int. J. Multiph. Flow, 22(2), 239 (1996)
Zenit R, Magnaudet J, Int’l J. Multiphase Flow., 35, 195 (2009)
Funfschilling D, Li HZ, Chem. Eng. Sci., 56(3), 1137 (2001)
Sousa RG, Riethmuller ML, Pinto AMFR, Campos JBLM, Chem. Eng. Sci., 60(7), 1859 (2005)
Nogueira S, Riethmuller ML, Campos JBLM, Pinto AMFR, Chem. Eng. Sci., 61(22), 7199 (2006)
Celata GP, Cumo M, D'Annibale F, Tomiyama A, Int’l J. Multiphase Flow., 30, 939 (2006)
Lertnuwat B, Bunyajitradulya A, Nuclear Eng. Des., 237, 1526 (2007)
Chen RC, Chou IS, Expt. Therm. Fluid Sci., 17, 165 (1998)
Kang Y, Kim SD, I&EC Process Des. Dev., 25, 717 (1986)
Chang SK, Kang Y, Kim SD, J. Chem. Eng. Japan., 19, 524 (1986)
Shin IS, Son SM, Kim UY, Kang Y, Kim SD, Jung H, Korean J. Chem. Eng., 26(2), 587 (2009)
Kang Y, Cho YJ, Woo KJ, Kim KI, Kim SD, Chem. Eng. Sci., 55(2), 411 (2000)
Son SM, Kang SH, Kim UY, Kang Y, Kim SD, Chem. Eng. Process., 46(8), 736 (2007)
Jang JH, Lim DH, Kang Y, Jun KW, Korean Chem. Eng. Res., 48(3), 359 (2010)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로