Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received December 29, 2010
Accepted February 8, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
표면 알킬기를 갖는 실리콘 나노입자의 One-Pot 용액환원 합성
One-Pot Synthesis of Alkyl-Terminated Silicon Nanoparticles by Solution Reduction
동아대학교 화학공학과, 604-714 부산광역시 사하구 하단 2동 840번지 1한양대학교 에너지공학과, 133-791 서울특별시 성동구 행당동 17번지
Department of Chemical Engineering, Dong-A University, 840 Hadan 2-dong, Saha-gu, Busan 604-714, Korea 1Department of Energy Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
jklee88@dau.ac.kr
Korean Chemical Engineering Research, October 2011, 49(5), 577-581(5), NONE Epub 30 September 2011
Download PDF
Abstract
가시광 영역에서 강한 광루미네선스(photoluminescence, PL) 특성이 있는 실리콘 나노입자는, 생물학적 형광 이미징, RGB(red, green, blue) 디스플레이, 포토닉스, 광전소자 등의 응용소재로 개발될 수 있어 많은 연구가 수행되고 있다. 실리콘 나노입자의 광학적 및 물리화학적 특성을 이용한 실용적인 응용 및 개발을 위해서는 그 특성의 조절이 용이한 제조법 개발이 필수적이다. 본 연구에서는 Na(naphthalide)를 환원제로 사용한 용액환원법을 이용하여 한 단계로 입자 표면이 알킬기로 안정화된 평균 <10 nm 크기의 실리콘 나노입자를 합성할 수 있는 방안을 시도하였다. 이를 위하여 실리콘 전구체로 알킬기를 포함하고 있는 (Octyl)SiCl3 단독 또는 (Octyl)SiCl3와 SiCl4의 혼합물을 사용하여 Si-Cl 결_x000D_
합의 환원을 통한 입자의 형성과 동시에 반응물에 포함된 Octyl 기에 의한 표면 안정화를 한번에 달성할 수 있었다. 합성한 실리콘 입자의 TEM/EDS, FTIR 분석결과 입자의 크기는 <10 nm이며, 표면이 알킬기로 덮여있어 소수성 용제인 헥산에 쉽게 용해되었으며 입자표면은 소량의 산화된 Si-O-Si 그룹을 포함하고 있었다. UV-vis 및 PL 분석결과 표면 알킬기를 포함하는 실리콘 나노입자의 전형적인 광 특성을 보여 간단한 반응단계를 통하여 표면이 Octyl기로 덮인 실리콘 나노입자를 합성할 수 있음을 보였다. 본 연구에서 시도한 합성법을 응용할 경우, 향 후 실리콘 나노입자의 표면에 다양한 기능기를 one-pot으로 도입할 수 있을 것으로 기대된다.
Silicon nanoparticles have attracted a great deal of scientific interests due to its intense photoluminescence in the visible spectral region and its potential applications in biological fluorescence maker, RGB (red, green, blue) display, photonics and photovoltaics etc. Practical applications making use of optical and physicochemical properties of Si nanoparticles requires an efficient synthetic method which allows easy modulation of their size, size distribution as well_x000D_
as surface functionalities etc. In this study, a one-pot solution reduction scheme is attempted to prepare alkyl-terminated Si nanoparticles (<10 nm) with Si precursors, (Octyl)SiCl3 or mixture of (Octyl)SiCl3 and SiCl4, containing alkyl-groups using Na(naphthalide) as reducing agent. The surface capping of Si nanoparticles with octyl-groups as well as Si nanoparticle formation was achieved in one-pot reaction. The hexane soluble Si nanoparticles with octyl-termination were in the range of 2-10 nm by TEM and some oxide groups (Si-O-Si) was present on the surface by EDS/FTIR analyses. The optical properties of Si nanoparticles measured by UV-vis and PL evidenced that photoluminescent Si nanoparticles with alkyl-termination was successfully synthesized by solution reduction of alkyl-containing Si precursors in one-pot reaction.
Keywords
References
Canham LT, Appl. Phys. Lett., 57, 1046 (1990)
Li ZF, Swihart MT, Ruckenstein E, Langmuir, 20(5), 1963 (2004)
Veinot JGC, Chem. Commun., 4160 (2006)
Shiohara A, Hanada S, Prabakar S, Fujioka K, Lim TH, Yamamoto K, Northcote PT, Tilley RD, J. Am. Chem. Soc., 132(1), 248 (2010)
Belomoin G, Therrien J, Smith A, Rao S, Twesten R, Chaieb S, Nayfeh MH, Wagner L, Mitas L, Appl. Phys. Lett., 80(5), 841 (2002)
Stupca M, Alsalhi M, Saud TA, Almuhanna A, Nayfeh MH, Appl. Phys. Lett., 91, 063107 (2007)
Lee JK, Kung MC, Trahey L, Missaghi MN, Kung HH, Chem. Mater., 21(1), 6 (2009)
Kim H, Seo M, Park MH, Cho J, Angew.Chem. Int. Ed., 49, 2146 (2010)
Kwon Y, Park GS, Cho JH, Electrochim. Acta, 52(14), 4663 (2007)
Wiggers H, Starke R, Roth P, Chem. Eng. Technol., 24(3), 261 (2001)
Li XG, He YQ, Talukdar SS, Swihart MT, Langmuir, 19(20), 8490 (2003)
Bley RA, Kauzlarich SM, J. Am. Chem. Soc., 118(49), 12461 (1996)
Baldwin RK, Pettigrew KA, Ratai E, Augustine MP, Kauzlarich SM, Chem. Commun., 1822 (2002)
Aihara S, Ishii R, Fukuhara M, Kamata N, Terunuma D, Hirano Y, Saito N, Aramata M, Kashimura S, J. Non-Cryst. Solids., 296, 135 (2001)
Choi J, Wang NS, Reipa V, Langmuir, 25(12), 7097 (2009)
Heath JR, Science., 258, 1131 (1992)
Yang CS, Bley RA, Kauzlarich SM, Lee HWH, Delgado GR, J. Am. Chem. Soc., 121(22), 5191 (1999)
Zou J, Baldwin RK, Pettigrew KA, Kauzlarich SM, Nano Lett., 4(7), 1181 (2004)
Pettigrew KA, Liu Q, Philip PP, Kauzlarich SM, Chem. Mater., 15, 4005 (2003)
Warner JH, Rubinsztein-Dunlop H, Tilley RD, J. Phys. Chem., 109, 19064 (2005)
Liu Q, Kauzlarich SM, Mater. Sci. Eng., B96, 72 (2002)
Li ZF, Swihart MT, Ruckenstein E, Langmuir, 20(5), 1963 (2004)
Veinot JGC, Chem. Commun., 4160 (2006)
Shiohara A, Hanada S, Prabakar S, Fujioka K, Lim TH, Yamamoto K, Northcote PT, Tilley RD, J. Am. Chem. Soc., 132(1), 248 (2010)
Belomoin G, Therrien J, Smith A, Rao S, Twesten R, Chaieb S, Nayfeh MH, Wagner L, Mitas L, Appl. Phys. Lett., 80(5), 841 (2002)
Stupca M, Alsalhi M, Saud TA, Almuhanna A, Nayfeh MH, Appl. Phys. Lett., 91, 063107 (2007)
Lee JK, Kung MC, Trahey L, Missaghi MN, Kung HH, Chem. Mater., 21(1), 6 (2009)
Kim H, Seo M, Park MH, Cho J, Angew.Chem. Int. Ed., 49, 2146 (2010)
Kwon Y, Park GS, Cho JH, Electrochim. Acta, 52(14), 4663 (2007)
Wiggers H, Starke R, Roth P, Chem. Eng. Technol., 24(3), 261 (2001)
Li XG, He YQ, Talukdar SS, Swihart MT, Langmuir, 19(20), 8490 (2003)
Bley RA, Kauzlarich SM, J. Am. Chem. Soc., 118(49), 12461 (1996)
Baldwin RK, Pettigrew KA, Ratai E, Augustine MP, Kauzlarich SM, Chem. Commun., 1822 (2002)
Aihara S, Ishii R, Fukuhara M, Kamata N, Terunuma D, Hirano Y, Saito N, Aramata M, Kashimura S, J. Non-Cryst. Solids., 296, 135 (2001)
Choi J, Wang NS, Reipa V, Langmuir, 25(12), 7097 (2009)
Heath JR, Science., 258, 1131 (1992)
Yang CS, Bley RA, Kauzlarich SM, Lee HWH, Delgado GR, J. Am. Chem. Soc., 121(22), 5191 (1999)
Zou J, Baldwin RK, Pettigrew KA, Kauzlarich SM, Nano Lett., 4(7), 1181 (2004)
Pettigrew KA, Liu Q, Philip PP, Kauzlarich SM, Chem. Mater., 15, 4005 (2003)
Warner JH, Rubinsztein-Dunlop H, Tilley RD, J. Phys. Chem., 109, 19064 (2005)
Liu Q, Kauzlarich SM, Mater. Sci. Eng., B96, 72 (2002)