ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 7, 2011
Accepted January 29, 2011
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

점성액체 기포탑에서 탑의 직경이 기포, wake 및 연속액상 체류량에 미치는 영향

Effects of Column Diameter on the Holdups of Bubble, Wake and Continuous Liquid Phase in Bubble Columns with Viscous Liquid Medium

충남대학교 화학공학과, 305-764 대전시 유성구 궁동 220 1한국화학연구원 그린화학연구단, 305-600 대전시 유성구 장동 100
School of Chemical Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Korea 1Green Chemical Technology Division, Korea Research Institute of Chemical Technology, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Korea
Korean Chemical Engineering Research, October 2011, 49(5), 582-587(6), NONE Epub 30 September 2011
downloadDownload PDF

Abstract

점성액체 기포탑에서 기포, wake 및 연속액상들의 체류량 특성을 고찰하였다. 기포탑의 직경(0.051, 0.076, 0.102 and 0.152 m ID), 기체 유속(0.02~0.16 m/s) 그리고 연속액상의 점도(0.001~0.050 Pa·s)가 기포, wake 및 연속액상의 체류량에 미치는 영향을 검토하였다. 기포, wake 그리고 연속액상들은 이중 전기 저항탐침방법에 의하여 성공적으로 구별할 수 있었다. 압축된 여과공기와 물 또는 CMC 수용액을 각각 기체와 연속액상으로 사용하였다. 기포탑에서 기포와 wake 상들을 연속적으로 검침하기위해 자료수집장치(DT 2805 Lab Card)와 컴퓨터를 사용하였다. 탐침 써키트로부터 수집된 아날로그 자료는 디지털 자료로 변환되었으며, 이들 자료를 이용하여 기포탑에서 상승하는 단일기포 뿐만이 아니라 다중기포들의 후면에서 wake 상을 검침할 수 있었다. 기포와 wake 상의 체류량은 각각 기포탑의 직경과 연속액상의 점도가 증가함에 따라 감소하였으나 연속액상의 체류량은 증가하였다. 그러나, 기포와 wake의 체류량은 각각 기체 유속이 증가함에 따라 증가한 반면 연속액상의 체류량은 감소하였다. wake 상 체류량에 대한 기포 체류량의 비율은 기포탑의 직경 또는 기체의 유속이 증가함에 따라 감소한 반면 연속액상의 점도가 증가함에 점성액체 기포탑에서 기포, wake 그리고 연속액상의 체류량은 본 연구의 실험범위에서 다음과 같은 실험변수의 상관식으로 나타낼 수 있었다. εB = 0.043D^(-0.18)UG0.56μL^(-0.13), εW = 0.003D^(-0.85)UG0.46μL^(-0.10), εC = 1.179D0.09UG^(-0.13)μL0.04.
Holdup characteristics of bubble, wake and continuous liquid phases were investigated in bubble columns with viscous liquid media. Effects of column diameter(0.051, 0.076, 0.102 and 0.152 m ID), gas velocity(UG=0.02~0.16m/s) and liquid viscosity(μL=0.001~0.050 Pa·s) of continuous liquid media on the holdups of bubble, wake and continuous liquid phases were discussed. The three phase such as bubble, wake and continuous liquid phases were classified successfully by adapting the dual electrical resistivity probe method. Compressed filtered air and water or aqueous solutions of CMC(Carboxy Methyl Cellulose) were used as a gas and a liquid phase, respectively. To detect the wake as well as bubble phases in the bubble column continuously, a data acquisition system(DT 2805 Lab Card) with personal computer was used. The analog signals obtained from the probe circuit were processed to produce the digital data, from which the wake phase was detected behind the multi-bubbles as well as single bubbles rising in the bubble columns. The holdup of bubble and wake phases decreased but that of continuous liquid media increased, with an increase in the column diameter or liquid viscosity. However, the holdup of bubble and wake phases increased but that of continuous media decreased with an increase in the gas velocity. The holdup ratio of wake to wake to bubble phase decreased with an increase in the column diameter or gas velocity, however, increased with an increase in the viscosity of continuous liquid media. The holdups of bubble, wake and continuous liquid media could be correlated in terms of operating variables within this experimental conditions as: εB = 0.043D^(-0.18)UG0.56μL^(-0.13), εW = 0.003D^(-0.85)UG0.46μL^(-0.10), εC = 1.179D0.09UG^(-0.13)μL0.04.

References

Fan LS, Tsuchiya K, Stoneham, MA, Butherworth Heinemann. (1990)
Deckwer WD, John Wiley and Sons Ltd. (1992)
Krishna R, Sie ST, Fuel Process. Technol., 64(1-3), 73 (2000)
van Baten JM, Ellenberger J, Krishna R, Catal. Today, 79(1-4), 259 (2003)
Seo MJ, Lim DH, Jin HR, Kang Y, Jung H, Lee HT, Korean Chem. Eng. Res., 47(6), 720 (2009)
Jang JH, Seo MJ, Lim DH, Kang Y, Jung H, Lee HT, Korean Chem. Eng. Res., 47(5), 587 (2009)
Seo MJ, Lim DH, Shin IS, Son SM, Kang Y, Korean Chem. Eng. Res., 47(4), 459 (2009)
Shin IS, Son SM, Kim UY, Kang Y, Kim SD, Jung H, Korean J. Chem. Eng., 26(2), 587 (2009)
Kim SD, Kang Y, Mixed-flow Hydrodynamics, Advances in Engineering Fluid Mechanics, Gulf Pub. Co., New York, U.S.A. (1996)
Kim SD, Kang Y, Chem. Eng. Sci., 52(21-22), 3639 (1997)
Kang Y, Lee IK, Shin IS, Son SM, Kim SD, Jung H, Korean Chem. Eng. Res., 46(3), 451 (2008)
Funfschilling D, Li HZ, Chem. Eng. Sci., 56(3), 1137 (2001)
Sousa RG, Riethmuller ML, Pinto AMFR, Campos JBLM, Chem. Eng. Sci., 60(7), 1859 (2005)
Nogueira S, Riethmuller ML, Campos JBLM, Pinto AMFR, Chem. Eng. Sci., 61(22), 7199 (2006)
Celata GP, Cumo M, D'Annibale F, Tomiyama A, Int'l J. Multiphase Flow., 30, 939 (2006)
Lertnuwat B, Bunyajitradulya A, Nuclear Eng. Des., 237, 1526 (2007)
Chen RC, Chou IS, Expt. Therm. Fluid Sci., 17, 165 (1998)
Chen RC, Wang FM, Lin TJ, Chem. Eng. Sci., 54(21), 4831 (1999)
Li Y, Zhang JP, Fan LS, Chem. Eng. Sci., 54(21), 5101 (1999)
Tsuchiya K, Fan LS, Chem. Eng. Sci., 43, 1167 (1988)
Kitano K, Fan LS, Chem. Eng. Sci., 43, 1355 (1988)
Jang JH, Lim DH, Kang Y, Jun KW, Korean Chem. Eng. Res., 48(3), 359 (2010)
Son SM, Kang SH, Kim UY, Kang Y, Kim SD, Chem. Eng. Process., 46(8), 736 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로