Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 15, 2011
Accepted February 11, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
분무열분해 공정을 이용하여 스트론튬 알루미네이트 녹색 형광체의 합성 및 발광 특성 개선
Synthesis and Luminescence Enhancement of Strontium Aluminate Green Phosphor via Spray Pyrolysis
공주대학교 화학공학부, 330-717 충남 천안시 부대동 275
Department of Chemical Engineering, Kongju National Univerisity, 275 Budae-dong, Cheonan-si, Chungnam 330-717, Korea
Korean Chemical Engineering Research, October 2011, 49(5), 594-599(6), NONE Epub 30 September 2011
Download PDF
Abstract
분무열분해 공정을 이용하여 SrAl2O4:Eu 녹색 형광체를 제조함에 있어 붕소의 치환, 유기첨가제 및 건조 조절제의 사용에 따른 발광 특성을 조사하였다. Al 자리에 붕소를 치환시켜 줌으로써 결정상은 순수해지고 발광강도는 크게 향상됨을 확인하였다. 휘도 측면에서 붕소의 함량은 약 1 at%로 하는 것이 가장 바람직하였다. 유기첨가제의 함량 변화에 따른 Sr0.9Al1.98B0.02O4:Eu0.1 형광체의 휘도 변화를 조사한 결과 0.2M을 사용했을 때 가장 높은 휘도를 얻었다. 유기첨가제와 함께 건조 조절제로 DMF 0.5M을 함께 사용함으로써 Sr0.9Al1.98B0.02O4:Eu0.1 형광체의 휘도는 약 172% 향상되었다. XRD 분석 결과에 의하면 사용한 유기첨가제와 DMF의 사용은 Sr0.9Al1.98B0.02O4:Eu0.1 형광체의 결정상 변화 없이 결정성을 크게 향상시켰다. 유기 첨가제만을 사용할 경우 형광체의 표면적은 커졌지만 DMF를 함께 사용함으로써 현저히 줄어들었다. 따라서 유기첨가제와 DMF를 동시에 사용하여 합성한 형광체의 휘도가 크게 향상된 것은 결정성 증가와 표면적 감소에 기인한 것이라고 결론지었다.
SrAl2O4:Eu green phosphor was prepared by spray pyrolysis and its luminescence properties were controlled by replacing the Al sites with boron and using organic modifier or drying control chemical additive. It was clear that the substitution of B into the Al sites was helpful to obtain pure monoclinic SrAl2O4 phase and greatly enhance the emission intensity. In terms of the emission intensity, the optimal content of boron was about 1 at% with respect to the aluminum element. The luminescence intensity of Sr0.9Al1.98B0.02O4:Eu0.1 phosphor could be improved by the use of 0.2 M organic additives in the spray solution. Futhermore, using 0.5 M dimethylformamide(DMF) as a drying control chemical with organic additives made it possible to improve about 172% the emission intensity of Sr0.9Al1.98B0.02O4:Eu0.1 phosphor. According to XRD analysis, the organic additive and DMF used enhanced the crystallinity without any change in the crystal phase. When used only the organic additive without DMF, the surface area of the prepared Sr0.9Al1.98B0.02O4:Eu0.1 phosphor became enlarged. The use of DMF with the organic additive resulted in significant reduction in the surface area. It was concluded that the increase of the crystallinity as well as the reduction of surface area mainly contribute to the improvement in the luminescence intensity of Sr0.9Al1.98B0.02O4:Eu0.1 phosphor prepared using DMF and organic additives.
References
Kang HS, Park SB, Koo HY, Kang YC, Korean Chem. Eng. Res., 44(6), 609 (2006)
Iwaya M, Terao S, Sano T, Ukai T, Nakamura R, Kamiyama S, Amano H, Akasaki I, J. Cryst. Growth, 237, 951 (2002)
Hu Y, Zhuang W, Ye H, Wang D, Zhang S, Huang X, J. Alloys Compd., 390, 226 (2005)
Kim JS, Jeon PE, Choi JC, Park HL, Solid State Commun., 133, 187 (2005)
Jiang L, Chang C, Mao D, Feng C, Mater. Sci. Eng., B., 103, 271 (2003)
Zhang X, Liu X, J. Electrochem. Soc., 139, 622 (1992)
Tang Z, Zhang F, Zhang Z, Huang C, Lin Y, J. Eur. Ceram. Soc., 20, 2129 (2000)
Kim JS, J. Korean Ceram. Soc., 45, 477 (2008)
Yoshida H, Fujino S, Kajiwara T, J. Ceram. Soc. Jpn., 118, 784 (2010)
Clabau F, Rocquefelte X, Jobic S, Deniard P, Whangbo MH, Garcia A, Mercier T, Solid State Sci., 9, 608 (2007)
Kang YC, Jung KY, Park SB, Korean Chem. Eng. Res., 44(3), 235 (2006)
Lee SH, Yi JH, Kim JH, Ko YN, Kang YC, Opt. Mater., 33, 538 (2011)
Jung KY, Jung HK, J. Lumin., 130, 1970 (2010)
Park K, Nam SW, Heo MH, Ceram. Int., 36, 1541 (2010)
Clabau F, Rocquefelte X, Jobic S, Deniard P, Whangbo MH, Garcia A, Mercier T, Chem. Mater., 17, 3904 (2005)
Singh V, Rao TK, Zhu JJ, J. Solid State Chem., 179, 2589 (2006)
Jung KY, Han KH, Electrochem. Solid State Lett., 8(2), H17 (2005)
Iwaya M, Terao S, Sano T, Ukai T, Nakamura R, Kamiyama S, Amano H, Akasaki I, J. Cryst. Growth, 237, 951 (2002)
Hu Y, Zhuang W, Ye H, Wang D, Zhang S, Huang X, J. Alloys Compd., 390, 226 (2005)
Kim JS, Jeon PE, Choi JC, Park HL, Solid State Commun., 133, 187 (2005)
Jiang L, Chang C, Mao D, Feng C, Mater. Sci. Eng., B., 103, 271 (2003)
Zhang X, Liu X, J. Electrochem. Soc., 139, 622 (1992)
Tang Z, Zhang F, Zhang Z, Huang C, Lin Y, J. Eur. Ceram. Soc., 20, 2129 (2000)
Kim JS, J. Korean Ceram. Soc., 45, 477 (2008)
Yoshida H, Fujino S, Kajiwara T, J. Ceram. Soc. Jpn., 118, 784 (2010)
Clabau F, Rocquefelte X, Jobic S, Deniard P, Whangbo MH, Garcia A, Mercier T, Solid State Sci., 9, 608 (2007)
Kang YC, Jung KY, Park SB, Korean Chem. Eng. Res., 44(3), 235 (2006)
Lee SH, Yi JH, Kim JH, Ko YN, Kang YC, Opt. Mater., 33, 538 (2011)
Jung KY, Jung HK, J. Lumin., 130, 1970 (2010)
Park K, Nam SW, Heo MH, Ceram. Int., 36, 1541 (2010)
Clabau F, Rocquefelte X, Jobic S, Deniard P, Whangbo MH, Garcia A, Mercier T, Chem. Mater., 17, 3904 (2005)
Singh V, Rao TK, Zhu JJ, J. Solid State Chem., 179, 2589 (2006)
Jung KY, Han KH, Electrochem. Solid State Lett., 8(2), H17 (2005)