Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 17, 2011
Accepted March 25, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
저온 용액공정을 이용한 인듐갈륨 산화물(IGO) 박막트랜지스터 제조 및 특성 연구
A Study on Indium Gallium Oxide Thin Film Transistors prepared by a Solution-based Deposition Method
영남대학교 화학공학부, 712-749 경북 경산시 대동 214-1 1오래곤주립대학교 화학생물환경공학부, 97331 미국 오래곤주 코발리스시
School of Chemical Engineering, Yeungnam University, 214-1 Dae-dong, Gyeongsan-si, Gyeonbuk 712-749, Korea 1School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA
Korean Chemical Engineering Research, October 2011, 49(5), 600-604(5), NONE Epub 30 September 2011
Download PDF
Abstract
본 연구에서는 박막 트랜지스터(TFTs)에 사용 가능한 Indium Gallium 산화물(IGO) 박막을 스핀코팅을 이용한 화학적 용액공정을 사용하여 SiO2/Si 기판 위에 증착시켰다. 또한 IGO 박막을 증착한 후에 이루어지는 열처리 온도가 박막의 결정화에 미치는 영향과 이들의 전기적 특성이 조사되었다. 스핀코팅법에 의한 IGO 박막을 증착하기 위해 사용된 In과 Ga의 비율은 2:1로 고정하였으며, 박막의 열처리 온도는 300~600 ℃의 범위에서 변화시켰다. 공기 중에서 300 ℃와 600 ℃에서 1시간 동안 열처리한 IGO 박막을 사용하여 제조한 박막 트랜지스터의 전류 이동도(field effect mobility)는 각각 0.34와 3.83 cm2/V·s로서 양호한 전자소자의 성능을 보였다. 또한 on/off 전류비(current ratio)는 105 이상이었으며, IGO 박막의 평균 투과율은 98%이었다.
Solution processed IGO thin films were prepared using a general chemical solution route by spin coating. The effect of the annealing temperature of IGO thin films based on the ratio of 2:1 of indium to gallium on crystallization was investigated with varying annealing temperature from 300 ℃ to 600 ℃. The electronic device characteristic of IGO thin film was investigated. The solution-processed IGO TFTs annealed at 300 and 600 ℃ in air for 1 h exhibited good electronic performances with field effect mobilities as high as 0.34 and 3.83 cm2/V·s, respectively. The on/off ratio of the IGO TFT in this work was 105 with 98% transmittance.
References
Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H, Science., 300, 1269 (2003)
Wang SL, Chen CY, Hsieh MK, Lee WC, Kung AH, Peng LH, “In-Ga-O Based Double-Heater Phase Change Memory Cell,” Proceedings of 2008 Joint Non-Volatile Semiconductor Memory Workshop and International Conference on Memory Technology and Design, IEEE, p. 33-36 (2008)
Hill R, J. Phys. C: Solid State Phys., 7(3), 521 (1974)
Yang F, Ma J, Luan CN, Kong LY, Appl. Surf. Sci., 255(8), 4401 (2009)
Ohta H, Orita M, Hirano M, Tanji H, Kawazoe H, Hosono H, Appl. Phys. Lett., 76(19), 2740 (2000)
Prince JJ, Ramamurthy S, Subramanian B, Sanjeeviraja C, Jayachandran M, J. Cryst. Growth, 240(1-2), 142 (2002)
Edwards DD, Mason TO, Goutenoire F, Poepplmeier KR, Appl. Phys. Lett., 70(13), 1706 (1997)
Coutts TJ, Young DL, Li X, MRS Bull., 25(8), 58 (2000)
Ueda N, Hosono H, Waseda R, Kawazoe H, Appl. Phys. Lett., 70(26), 3561 (1997)
Chiang HQ, Hong D, Hung CM, Presley RE, Wager JF, Park CH, Keszler DA, Herman GS, J. Vac. Sci. Technol. B, 24(6), 2702 (2006)
Vigreux C, Binet L, Gourier D, Piriou B, J. Solid State Chem., 157(1), 94 (2001)
Edwards DD, Folkins PE, Mason TO, J. Am. Ceramic. Soc., 80, 253 (1997)
Presley RE, Hong D, Chiang HQ, Hung CM, Hoffman RL, Wager JF, Solid-State Electron., 50(3), 500 (2006)
Mensinger ZL, Gatlin JT, Meyers ST, Zakharov LN, Keszler DA, Johnson DW, Angew. Chem., 120(49), 9626 (2008)
Jung JY, Park NK, Han SY, Lee TJ, Ryu SO, Chang CH, Curr. Appl. Phys., 8(6), 720 (2008)
Chun HJ, Choi YS, Bae SY, Choi HC, Park JH, Appl.Phys. Lett., 85(3), 461 (2004)
Wang SL, Chen CY, Hsieh MK, Lee WC, Kung AH, Peng LH, “In-Ga-O Based Double-Heater Phase Change Memory Cell,” Proceedings of 2008 Joint Non-Volatile Semiconductor Memory Workshop and International Conference on Memory Technology and Design, IEEE, p. 33-36 (2008)
Hill R, J. Phys. C: Solid State Phys., 7(3), 521 (1974)
Yang F, Ma J, Luan CN, Kong LY, Appl. Surf. Sci., 255(8), 4401 (2009)
Ohta H, Orita M, Hirano M, Tanji H, Kawazoe H, Hosono H, Appl. Phys. Lett., 76(19), 2740 (2000)
Prince JJ, Ramamurthy S, Subramanian B, Sanjeeviraja C, Jayachandran M, J. Cryst. Growth, 240(1-2), 142 (2002)
Edwards DD, Mason TO, Goutenoire F, Poepplmeier KR, Appl. Phys. Lett., 70(13), 1706 (1997)
Coutts TJ, Young DL, Li X, MRS Bull., 25(8), 58 (2000)
Ueda N, Hosono H, Waseda R, Kawazoe H, Appl. Phys. Lett., 70(26), 3561 (1997)
Chiang HQ, Hong D, Hung CM, Presley RE, Wager JF, Park CH, Keszler DA, Herman GS, J. Vac. Sci. Technol. B, 24(6), 2702 (2006)
Vigreux C, Binet L, Gourier D, Piriou B, J. Solid State Chem., 157(1), 94 (2001)
Edwards DD, Folkins PE, Mason TO, J. Am. Ceramic. Soc., 80, 253 (1997)
Presley RE, Hong D, Chiang HQ, Hung CM, Hoffman RL, Wager JF, Solid-State Electron., 50(3), 500 (2006)
Mensinger ZL, Gatlin JT, Meyers ST, Zakharov LN, Keszler DA, Johnson DW, Angew. Chem., 120(49), 9626 (2008)
Jung JY, Park NK, Han SY, Lee TJ, Ryu SO, Chang CH, Curr. Appl. Phys., 8(6), 720 (2008)
Chun HJ, Choi YS, Bae SY, Choi HC, Park JH, Appl.Phys. Lett., 85(3), 461 (2004)