Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received January 20, 2011
Accepted March 16, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
어닐링 온도에 따른 무배향 PLA 필름의 등온결정화 거동과 표면물성에 관한 연구
Study on Isothermal Crystallization Behavior and Surface Properties of Non-Oriented PLA Film with Annealing Temperature
성균관대학교 화학공학과, 440-746 경기도 수원시 장안구 천천동 300 1성균관대학교 바이오/나노융합재료연구단, 440-746 경기도 수원시 장안구 천천동 300
Department of Chemical Engineering, Sungkyunkwan University, 300 Chunchun-dong , Jangan-gu, Suwon, Gyeonggi 440-746, Korea 1Bio/Nano-Fusion Material Research Center, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi 440-746, Korea
mun-seon@nate.com
Korean Chemical Engineering Research, October 2011, 49(5), 611-616(6), NONE Epub 30 September 2011
Download PDF
Abstract
본 연구에서는 무배향 PLA 필름의 어닐링(annealing) 단계를 통하여 온도별 PLA 필름의 avrami 결정화 속도식을 도출하고 결정화 속도상수(k)를 비교함으로써 최적화된 어닐링 온도를 제안하였다. 120, 130, 140 ℃ 온도에서 결정화된 필름의 결정화 속도상수(k)는 각각 1.64, 1.68, 1.26이었다. 필름표면에 대한 어닐링은 필름의 표면조도와 동마찰계 수에 영향을 주는데 80, 110, 120, 130, 140 ℃의 온도조건에서 표면조도(Ra)는 각각 0.006, 0.009, 0.015, 0.027, 0.029 μm로 높아졌고 동마찰계수(μk)는 0.45, 0.43, 0.33, 0.31, 0.27로 낮아졌다. 탈크를 1, 3, 5 wt%씩 첨가하는 경우 PLA 필름의 결정화 속도상수(k)는 0.58, 0.46, 0.39로 낮아졌다.
In the study, annealing temperature was optimized by comparing with avrami crystallization rate and constant (k) using non-oriented PLA film as a base film. Crystallization rate constant of PLA film was 1.64, 1.68, and 1.26 at 120 ℃, 130 ℃, and 140 ℃, respectively. Annealing temperature was mainly affected on the surface properties such as rougnness (Ra) and kinetic friction coefficient (μk). Roughness of PLA film was 0.006 μm at 80 ℃ and increased to 0.009 μm, 0.015 μm, 0.027 μm, and 0.029 μm at 110 ℃, 120 ℃, 130 ℃ and 140 ℃, respectively. Kinetic friction coefficient decreased 0.45 to 0.43, 0.33, 0.31, 0.27 as annealing temperature was at 80 ℃, 110 ℃, 120 ℃, 130 ℃, and 140 ℃, respectivly. In addition, rate constant (k) was 0.58, 0.46, and 0.39 with adding 1 wt%, 3 wt%, and 5 wt% talc, respectively.
Keywords
References
Yoon CS, Ji DS, Text. Sci. Eng., 43(5), 235 (2006)
Kang KS, Shin BY, Korean Chem. Eng. Res., 46(1), 124 (2007)
Lee BI, Kim SH, Lee MS, Text. Sci. Eng., 45(5), 269 (2008)
Li HB, Huneault MA, Polymer, 48(23), 6855 (2007)
Harris AM, Lee EC, J. Appl. Polym. Sci., 107(4), 2246 (2008)
Xiao H, Yang L, Ren X, Jiang T, Yeh T, Polym. Compos., 1 (2010)
Yuksekkalayci C, Yilmazer U, Orbey N, Polym. Eng. Sci., 39(7), 1216 (1999)
Tsai CC, Wu RJ, Cheng HY, Li SC, Siao YY, Kong DC, Jang GW, Polym. Degrad. Stabil., 95, 1292 (2010)
Gohil RM, J. Appl. Polym. Sci., 52(7), 925 (1994)
Yu L, Liu HS, Xie FW, Chen L, Li XX, Polym. Eng. Sci., 48(4), 634 (2008)
Kim Y, Kim MS, Polym. Sci. Technol., 3(3), 185 (1992)
Fakirov S, Fischer EW, Hoffmann R, Schmidt GF, Polym., 18(11), 1121 (1977)
Rao YQ, Greener J, Avila-Orta CA, Hsiao BS, Blanton TN, Polymer, 49(10), 2507 (2008)
Park SD, Todo M, Arakawa K, J. Mater. Sci., 39(3), 1113 (2004)
Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP, Thermochim. Acta, 427(1-2), 117 (2005)
Lim LT, Auras R, Rubino M, Prog. Polym. Sci., 33, 820 (2008)
Kim HC, Lee H, Kim HY, Pak PK, Lee BO, Polym.(Korea), 23(1), 25 (1999)
Radhakrishnan S, Sonawane PS, J. Appl. Polym. Sci., 89(11), 2994 (2003)
Radhakrishnan S, Sonawane P, Pawaskar N, J. Appl. Polym. Sci., 93(2), 615 (2004)
Kang KS, Shin BY, Korean Chem. Eng. Res., 46(1), 124 (2007)
Lee BI, Kim SH, Lee MS, Text. Sci. Eng., 45(5), 269 (2008)
Li HB, Huneault MA, Polymer, 48(23), 6855 (2007)
Harris AM, Lee EC, J. Appl. Polym. Sci., 107(4), 2246 (2008)
Xiao H, Yang L, Ren X, Jiang T, Yeh T, Polym. Compos., 1 (2010)
Yuksekkalayci C, Yilmazer U, Orbey N, Polym. Eng. Sci., 39(7), 1216 (1999)
Tsai CC, Wu RJ, Cheng HY, Li SC, Siao YY, Kong DC, Jang GW, Polym. Degrad. Stabil., 95, 1292 (2010)
Gohil RM, J. Appl. Polym. Sci., 52(7), 925 (1994)
Yu L, Liu HS, Xie FW, Chen L, Li XX, Polym. Eng. Sci., 48(4), 634 (2008)
Kim Y, Kim MS, Polym. Sci. Technol., 3(3), 185 (1992)
Fakirov S, Fischer EW, Hoffmann R, Schmidt GF, Polym., 18(11), 1121 (1977)
Rao YQ, Greener J, Avila-Orta CA, Hsiao BS, Blanton TN, Polymer, 49(10), 2507 (2008)
Park SD, Todo M, Arakawa K, J. Mater. Sci., 39(3), 1113 (2004)
Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP, Thermochim. Acta, 427(1-2), 117 (2005)
Lim LT, Auras R, Rubino M, Prog. Polym. Sci., 33, 820 (2008)
Kim HC, Lee H, Kim HY, Pak PK, Lee BO, Polym.(Korea), 23(1), 25 (1999)
Radhakrishnan S, Sonawane PS, J. Appl. Polym. Sci., 89(11), 2994 (2003)
Radhakrishnan S, Sonawane P, Pawaskar N, J. Appl. Polym. Sci., 93(2), 615 (2004)