Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 24, 2011
Accepted March 20, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
고압반응 하에서 요소와 메탄올을 사용한 메틸카바메이트와 디메틸카보네이트 제조에 관한 금속산화물 촉매 및 이온성액체의 영향
Effect of Metal Oxide Catalysts and Ionic Liquids on the Synthesis of Methyl Carbamate and Dimethyl Carbonate from Urea and Methanol under High Pressure Reaction System
한국화학연구원 그린화학연구단, 305-606 대전시 유성구 장동 100번지 1부산대학교 화학공학과, 609-735 부산광역시 금정구 장전동 산 30번지 2서강대학교 화학생명공학과, 121-742 서울시 마포구 신수동 1
Alternative Chemicals/Fuel Research Center, Green Chemistry Division, Korea Research Institute of Chemical Technology, Jang-dong 100, Yuseong-gu, Daejeon 305-606, Korea 1Department of Chemical Engineering, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735, Korea 2Department of Chemical & Biomolecular Engineering, Sogang University, 1, Sinsu-dong, Mapo-gu, Seoul 121-742, Korea
cukim@krict.re.kr
Korean Chemical Engineering Research, December 2011, 49(6), 732-738(7), NONE Epub 25 November 2011
Download PDF
Abstract
고압 반응시스템에서 요소와 메탄올로부터 메틸카바메이트(MC) 및 디메틸카보네이트(DMC)의 제조에 관한 금속 산화물촉매와 이온성액체의 영향을 고찰하였다. 고립계에서 요소와 메탄올로부터 MC 수율은 촉매를 사용하지 않고도 150 ℃ 이상의 반응온도에서 거의 100%를 나타내었으나, DMC 수율은 반응온도와 무관하게 1.5% 이하로 매우 낮은 값을 나타내었다. 또한 MC와 메탄올로부터 DMC 수율은 ZnCl2 촉매를 사용한 경우에 가장 우수하였으며, 최적조건에서 16.3% 정도를 나타내었다. DMC 수율은 반연속식 실험에서 나노 크기의 촉매와 이온성액체를 함께 적용한 경우에 좀 더 향상되었다.
Effect of metal oxide catalysts and ionic liquids on the synthesis of methyl carbamate(MC) and dimethyl carbonate (DMC) from urea and methanol was investigated in a high pressure reaction system. In closed system, MC yield from urea and methanol reached almost 100% at reaction temperature over 150 ℃ without catalyst, whereas DMC yield of 1.5% under was obtained irrespective of catalysts used. In DMC synthesis from MC and methanol, ZnCl2 showed the highest catalytic activity and led to the DMC yield of 16.3% under optimal conditions. Furthermore, DMC yield can be enhanced by the simultaneous application of ionic liquids with nano-sized catalysts in semi-continuous reaction system.
References
Sun JJ, Yang BL, Lin HY, Chem. Eng. Technol., 27(4), 435 (2004)
Keller N, Rebmann G, Keller V, J. Mol. Catal. A-Chem., 317(1-2), 1 (2010)
Kim DW, Kim DK, Kim CW, Koh JC, Park DW, Korean Chem. Eng. Res., 48(3), 332 (2010)
Kim KH, Kim DW, Kim CW, Koh JC, Park DW, Korean J. Chem. Eng., 27(5), 1441 (2010)
Lin HY, Yang BL, Sun JJ, Wang XP, Wang DP, Chem. Eng. J., 103(1-3), 21 (2004)
Selva M, Perosa A, Green Chem., 10, 457 (2008)
Lee YS, Koh JC, Kim BS, Kim KJ, Koo KK, J. Korean Ind. Eng. Chem., 14(7), 1 (2003)
Sakakura T, Kohno K, Chem. Commun., 1312 (2009)
Delledonne D, Rivetti F, Romano U, Appl. Catal. A: Gen., 221(1-2), 241 (2001)
Wang MH, Wang H, Zhao N, Wei W, Sun YH, Ind. Eng. Chem. Res., 46(9), 2683 (2007)
Zhao WB, Wang F, Peng WC, Zhao N, Li JP, Xiao FK, Wei W, Sun YH, Ind. Eng. Chem. Res., 47(16), 5913 (2008)
Wang X, Yang B, Wang D, Zhai X, Chem. Eng. J., 122, 1520 (2006)
Kim DW, Kim CW, Koh JC, Park DW, J. Ind. Eng. Chem., 16(3), 474 (2010)
Dharman MM, Ju HY, Shim HL, Lee MK, Kim YH, Park DW, J. Mol. Catal. A-Chem., 303(1-2), 96 (2009)
Nockmann P, Thijs B, Pittois S, Thoen J, Glorieux C, Hecke KV, Meervelt LV, Kirchner B, Binnemans K, J. Phys. Chem. B., 110, 978 (2006)
Kim CU, Kim YS, Chae HJ, Jeong KE, Jeong SY, Jun KW, Lee KY, Korean J. Chem. Eng., 27, 777 (2009)
Li Z, Shkilnyy A, Taubert A, Crystal Growth & Design., 8(12), 4526 (2008)
Keller N, Rebmann G, Keller V, J. Mol. Catal. A-Chem., 317(1-2), 1 (2010)
Kim DW, Kim DK, Kim CW, Koh JC, Park DW, Korean Chem. Eng. Res., 48(3), 332 (2010)
Kim KH, Kim DW, Kim CW, Koh JC, Park DW, Korean J. Chem. Eng., 27(5), 1441 (2010)
Lin HY, Yang BL, Sun JJ, Wang XP, Wang DP, Chem. Eng. J., 103(1-3), 21 (2004)
Selva M, Perosa A, Green Chem., 10, 457 (2008)
Lee YS, Koh JC, Kim BS, Kim KJ, Koo KK, J. Korean Ind. Eng. Chem., 14(7), 1 (2003)
Sakakura T, Kohno K, Chem. Commun., 1312 (2009)
Delledonne D, Rivetti F, Romano U, Appl. Catal. A: Gen., 221(1-2), 241 (2001)
Wang MH, Wang H, Zhao N, Wei W, Sun YH, Ind. Eng. Chem. Res., 46(9), 2683 (2007)
Zhao WB, Wang F, Peng WC, Zhao N, Li JP, Xiao FK, Wei W, Sun YH, Ind. Eng. Chem. Res., 47(16), 5913 (2008)
Wang X, Yang B, Wang D, Zhai X, Chem. Eng. J., 122, 1520 (2006)
Kim DW, Kim CW, Koh JC, Park DW, J. Ind. Eng. Chem., 16(3), 474 (2010)
Dharman MM, Ju HY, Shim HL, Lee MK, Kim YH, Park DW, J. Mol. Catal. A-Chem., 303(1-2), 96 (2009)
Nockmann P, Thijs B, Pittois S, Thoen J, Glorieux C, Hecke KV, Meervelt LV, Kirchner B, Binnemans K, J. Phys. Chem. B., 110, 978 (2006)
Kim CU, Kim YS, Chae HJ, Jeong KE, Jeong SY, Jun KW, Lee KY, Korean J. Chem. Eng., 27, 777 (2009)
Li Z, Shkilnyy A, Taubert A, Crystal Growth & Design., 8(12), 4526 (2008)