Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 4, 2011
Accepted June 20, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
수열 합성법에 의한 Zinc Oxide의 제조 및 Tartrazine 분해 특성
Preparation of Zinc Oxide by Hydrothermal Precipitation and Degradation of Tartrazine
부경대학교 화학공학과, 608-739 부산시 남구 용당동 산100 1동명대학교 식품공학과, 608-711 부산시 남구 신선로 428번지 2부경대학교 기계시스템공학과, 608-739 부산시 남구 용당동 산100
Department of Chemical Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Busan 608-739, Korea 1Department of Food Engineering, Tong Myoung University, 428, Sinseonno, Nam-gu, Busan 608-711, Korea 2Department of Mechanical System Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu, Busan 608-739, Korea
csju@pknu.ac.kr
Korean Chemical Engineering Research, December 2011, 49(6), 752-757(6), NONE Epub 25 November 2011
Download PDF
Abstract
암모니아수와 zinc acetate로부터 액상 수열합성법에 의한 ZnO의 제조에 있어 반응온도, 반응물의 농도와 혼합방법, 용액의 pH 등 반응조건에 따른 ZnO 입자의 형상과 입자분포 등 제조특성을 고찰하고, UV 조사하에 tartrazine의 광분해를 측정하여 합성된 ZnO의 광촉매로서의 성능을 확인하였다. 반응용액의 pH가 높을수록 ZnO 입자의 평균 크기는 증가하였고, zinc acetate의 농도가 증가할수록 그리고 반응온도가 증가할수록 입자의 크기는 감소하였다. 반응용액의 혼합시 암모니아수 주입 후에 zinc acetate를 첨가하였을 경우 더 작은 입자를 얻을 수 있었다. 최소 크기의 ZnO 입자의 생성을 위한 최적 조건은 용액의 pH 11.2, zinc acetate의 농도 0.6 M, 반응온도 90℃ 였으며, 입자 평균크기는 3.133 μm이었다. 합성온도 80 ℃, zinc acetate 농도 1.0M 및 반응용액의 pH 11.2의 조건에서 합성된 ZnO에 의한 tartrazine의 광촉매 분해는 분해시간 60분에서 약 97%의 분해율을 보였다.
The effects of reaction temperature, reactant concentration, pH of solution and mixing order of reactants on the particle shape and size distribution of zinc oxide were investigated in the preparation of zinc oxide from ammonium hydroxide and zinc acetate by the method of aqueous hydrothermal precipitation method, and the photocatalytic ability of zinc oxide synthesized was measured from the degradation of tartrazine under UV irradiation. The average particle size was increased with pH of solution but decreased with zinc acetate concentration and reaction temperature. The optimum condition for the synthesis of minimum sized zinc oxide was pH 11.2, concentration of zinc acetate 0.6 M and reaction temperature 90 ℃, and its average particle size was 3.133 μm. 97% of tartrazine was degraded by zinc oxide in sixty minutes.
References
Ju CS, Lee MG, Hong SS, HWAHAK KONGHAK, 35(5), 655 (1997)
Jose J, Abdul Khadar M, Nanostruct. Master., 11(8), 1091 (1999)
Jose J,Abdul Khadar M, Master.Sci. Eng. A., 304-306, 810-813 (2001)
Jose J, Abdul Khadar M, Acta Mater., 49, 729 (2001)
Morales AM, Lieber CM, Science, 279(5348), 208 (1998)
Han WQ, Fan SS, Li QQ, Hu YD, Science, 277(5330), 1287 (1997)
Li JY, Chen XL, Qiao ZY, Cao YG, Lan YC, J. Cryst. Growth, 213(3-4), 408 (2000)
Yang P, Lieber CM, J. Master. Res., 12(11), 2981 (1997)
Pan ZW, Dai ZR, Wang ZL, Science, 291(5510), 1947 (2001)
Huang MH, Wu YY, Feick H, Tran N, Weber E, Yang PD, Adv. Mater., 13(2), 113 (2001)
Yoo BK, Park YW, Kang CY, Kim JS, Yoon SY, J. Korean Inst.Elec. Electrn. Mat. Eng., 22(1), 884 (2009)
Kim KB, Kim CI, Jeong YH, Lee YJ, Paik JH, J. Korean Inst.Elec. Electrn. Mat. Eng., 23(3), 222 (2010)
Ju CS, Lee HG, Jeong YO, Chyn JK, Hwang DK, HWAHAK KONGHAK, 33(4), 437 (1995)
Jeong KS, J. Environmental Sciences., 12(3), 319 (2003)
Jeong KS, J. Environmental Sciences., 15(12), 1155 (2006)
Takada T, Bull. Inst. Chem. Res., 56(5) (1978)
Kim BC, Park ZH, Shin HS, Lee SK, Lee BK, J. Korean Ceramic Society., 35, 107 (1998)
Jeong KS, Na SE, Lee HS, Korean Soc. Coll. Edu., 5(2), 183 (2004)
Jose J, Abdul Khadar M, Nanostruct. Master., 11(8), 1091 (1999)
Jose J,Abdul Khadar M, Master.Sci. Eng. A., 304-306, 810-813 (2001)
Jose J, Abdul Khadar M, Acta Mater., 49, 729 (2001)
Morales AM, Lieber CM, Science, 279(5348), 208 (1998)
Han WQ, Fan SS, Li QQ, Hu YD, Science, 277(5330), 1287 (1997)
Li JY, Chen XL, Qiao ZY, Cao YG, Lan YC, J. Cryst. Growth, 213(3-4), 408 (2000)
Yang P, Lieber CM, J. Master. Res., 12(11), 2981 (1997)
Pan ZW, Dai ZR, Wang ZL, Science, 291(5510), 1947 (2001)
Huang MH, Wu YY, Feick H, Tran N, Weber E, Yang PD, Adv. Mater., 13(2), 113 (2001)
Yoo BK, Park YW, Kang CY, Kim JS, Yoon SY, J. Korean Inst.Elec. Electrn. Mat. Eng., 22(1), 884 (2009)
Kim KB, Kim CI, Jeong YH, Lee YJ, Paik JH, J. Korean Inst.Elec. Electrn. Mat. Eng., 23(3), 222 (2010)
Ju CS, Lee HG, Jeong YO, Chyn JK, Hwang DK, HWAHAK KONGHAK, 33(4), 437 (1995)
Jeong KS, J. Environmental Sciences., 12(3), 319 (2003)
Jeong KS, J. Environmental Sciences., 15(12), 1155 (2006)
Takada T, Bull. Inst. Chem. Res., 56(5) (1978)
Kim BC, Park ZH, Shin HS, Lee SK, Lee BK, J. Korean Ceramic Society., 35, 107 (1998)
Jeong KS, Na SE, Lee HS, Korean Soc. Coll. Edu., 5(2), 183 (2004)