Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 16, 2011
Accepted September 12, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
TiO2 필러를 포함하는 PEO/PMMA 고분자 복합체 전해질의 이온전도도 및 결정화도
Study on Ionic Conductivity and Crystallinity of PEO/PMMA Polymer Composite Electrolytes containing TiO2 Filler
부산대학교 화공생명공학부, 609-735 부산시 금정구 장전동 산30 1인하대학교 화학과, 402-751 인천광역시 남구 인하로 100
Department of Chemical and Biochemical Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Korea 1Department of Chemistry, Inha University, 100, Inharo, Nam-gu, Incheon 402-751, Korea
seokkim@pusan.ac.kr
Korean Chemical Engineering Research, December 2011, 49(6), 758-763(6), NONE Epub 25 November 2011
Download PDF
Abstract
본 연구에서는 poly(ethylene oxide) (PEO)와 poly(methyl methacrylate) (PMMA) 블렌드를 고분자 매트릭스(matrix)로 사용하고, 가소제로propylene carbonate (PC), 리튬염인 LiClO4, 그리고 서로 다른 함량의 세라믹 필러인 TiO2를 이용하여 용액 캐스팅(solution casting)법에 의해 고분자 복합체 전해질 필름을 제조하였다. 고분자 전해질의 결정화도와 이온전도도는 각각, X선 회절분석기(XRD)와 AC임피던스법을 통해 분석하였고, 표면 형태학(morphology)을 조사하기 위해 주사전자현미경(SEM)으로 고찰하였다. 그 결과, TiO2의 함량을 증가시킴으로써 PEO의 결정화 영역이 감소하였고, 이온전도도는 증가하였다. 특히 TiO2의 함량이 15 wt%일 때 가장 높은 이온전도도가 관찰된 반면, 15 wt% 이상을 첨가한 경우, 이온전도도가 감소된 경향을 관찰할 수 있었다. 이는 표면 형태학를 통해 고분자와 필러간의 비혼합성 혹은 필러응집에 의해 불균일적인 형태학이 나타남으로써 이온전도도가 감소하는 현상을 확인할 수 있었다.
In this work, polymer composite electrolytes were prepared by a blend of pol (methyl methacrylate)(PMMA) and poly(ethylene oxide) (PEO) as a polymer matrix, propylene carbonate as a plasticizer, LiClO4 as a salt, and by containing a different content of TiO2, by using the solution casting method. The crystallinity and ionic conductivity of the polymer electrolytes was evaluated using X-ray diffraction(XRD) and AC impedance method, respectively. The morphology of composite electrolyte film was analyzed by SEM method. From the experimental results, by increasing the TiO2 content, crystallinity of PEO was reduced, and ionic conductivity was increased. In particular, the ionic conductivity was dependent on the content of TiO2 and showed the highest value 15 wt%. However, when TiO2 content exceeds 15 wt%, the ionic conductivity was decreased. According to the surface morphology, the ionic conductivity was decreased because the polymer composite electrolytes showed a heterogenous morphology of fillers due to immiscibility or aggregation of the filler within the polymer matrix.
References
Schalkwijk WAV, Scrosati B, Advances in Lithium Ion Batteries., Kluwer Academic, New York (2002)
Nazri GA, Pistoia G, Lithium Batteries., Kluwer Academic, New York (2004)
Moon T, Kim C, Park B, J. Power Sources, 155(2), 391 (2006)
Dias FB, Plomp L, Veldhuis JBJ, J. Power Sources, 88(2), 169 (2000)
Meyer WH, Adv. Mater., 10(6), 439 (1998)
Song JY, Wang YY, Wan CC, J. Power Sources, 77(2), 183 (1999)
Fergus JW, J. Power Sources, 195(15), 4554 (2010)
Shanmukaraj D, Wang GX, Murugan R, Liu HK, J. Phys. Chem. Solids., 69, 243 (2008)
Kim S, Hwang EJ, Lee JR, Kim HI, Park SJ, Polym.(Korea), 31(4), 297 (2007)
Han AR, Park SJ, Shin JS, Kim S, Korean Chem. Eng. Res., 47(4), 476 (2009)
Shriver DF, Papke BL, Ratner MA, Dupon R, Wong T, Brodwin M, Solid State Ionics., 5, 83 (1981)
Yasuo T, Kazuo H, Yasuhiko S, Solid State Ionics., 60, 125 (1993)
Armand MB, Ann. Rev. Mater. Sci., 16, 245 (1986)
Wright PV, Br. Polym. J., 7, 319 (1976)
Bohnke O, Frand G, Rezrazi M, Rousselot C, Truche C, Solid State Ion., 66(1-2), 105 (1993)
Christie AM, Vincent CA, J. Appl. Electrochem., 26(3), 255 (1996)
Borkowska R, Laskowski J, Plocharski J, Przyluski J, Wieczorek W, J. Appl. Electrochem., 23, 991 (1993)
Gao L, Macdonald DD, J. Electrochem. Soc., 144(4), 1174 (1997)
Rietman EA, Kaplan ML, J. Polym. Sci., Part C: Polym. Lett., 28(6), 187 (1990)
Fang CP, Ying SK, Eur.Polym. J., 29(6), 799 (1993)
Croce F, Appetechi GB, Persi L, Scrosati B, Nature., 394, 456 (1998)
Krejza O, Velicka J, Sedlarikova M, Vondrak J, J. Power Sources, 178(2), 774 (2008)
Jeon JD, Kim MJ, Kwak SY, J. Power Sources, 162(2), 1304 (2006)
Seo YJ, Cha JH, Lee H, Ha YJ, Koh JH, Lee C, Korean Chem. Eng. Res., 46(1), 170 (2008)
Harris CS, Rukavina TG, Electrochim. Acta, 40(13-14), 2315 (1995)
Osaka T, Liu XJ, Nojima M, Momma T, J. Electrochem. Soc., 146(5), 1724 (1999)
Johan MR, Shy OH, Ibrahim S, Yassin SMM, Hui TY, Solid State Ion., 196, 41 (2011)
Kim HS, Cho BW, Yun KS, Chun HS, J. Korean Ind. Eng. Chem., 7(3), 433 (1996)
Wen ZY, Itoh T, Ikeda M, Hirata N, Kubo M, Yamamoto O, J. Power Sources, 90(1), 20 (2000)
Lin CW, Hung CL, Venkateswarlu M, Hwang BJ, J. Power Sources, 146(1-2), 397 (2005)
Wang YJ, Kim D, Electrochim. Acta, 52(9), 3181 (2007)
Kim S, Park SJ, Solid State Ion., 178(13-14), 973 (2007)
Kim S, Park SJ, J. Colloid Interface Sci., 332(1), 145 (2009)
Nazri GA, Pistoia G, Lithium Batteries., Kluwer Academic, New York (2004)
Moon T, Kim C, Park B, J. Power Sources, 155(2), 391 (2006)
Dias FB, Plomp L, Veldhuis JBJ, J. Power Sources, 88(2), 169 (2000)
Meyer WH, Adv. Mater., 10(6), 439 (1998)
Song JY, Wang YY, Wan CC, J. Power Sources, 77(2), 183 (1999)
Fergus JW, J. Power Sources, 195(15), 4554 (2010)
Shanmukaraj D, Wang GX, Murugan R, Liu HK, J. Phys. Chem. Solids., 69, 243 (2008)
Kim S, Hwang EJ, Lee JR, Kim HI, Park SJ, Polym.(Korea), 31(4), 297 (2007)
Han AR, Park SJ, Shin JS, Kim S, Korean Chem. Eng. Res., 47(4), 476 (2009)
Shriver DF, Papke BL, Ratner MA, Dupon R, Wong T, Brodwin M, Solid State Ionics., 5, 83 (1981)
Yasuo T, Kazuo H, Yasuhiko S, Solid State Ionics., 60, 125 (1993)
Armand MB, Ann. Rev. Mater. Sci., 16, 245 (1986)
Wright PV, Br. Polym. J., 7, 319 (1976)
Bohnke O, Frand G, Rezrazi M, Rousselot C, Truche C, Solid State Ion., 66(1-2), 105 (1993)
Christie AM, Vincent CA, J. Appl. Electrochem., 26(3), 255 (1996)
Borkowska R, Laskowski J, Plocharski J, Przyluski J, Wieczorek W, J. Appl. Electrochem., 23, 991 (1993)
Gao L, Macdonald DD, J. Electrochem. Soc., 144(4), 1174 (1997)
Rietman EA, Kaplan ML, J. Polym. Sci., Part C: Polym. Lett., 28(6), 187 (1990)
Fang CP, Ying SK, Eur.Polym. J., 29(6), 799 (1993)
Croce F, Appetechi GB, Persi L, Scrosati B, Nature., 394, 456 (1998)
Krejza O, Velicka J, Sedlarikova M, Vondrak J, J. Power Sources, 178(2), 774 (2008)
Jeon JD, Kim MJ, Kwak SY, J. Power Sources, 162(2), 1304 (2006)
Seo YJ, Cha JH, Lee H, Ha YJ, Koh JH, Lee C, Korean Chem. Eng. Res., 46(1), 170 (2008)
Harris CS, Rukavina TG, Electrochim. Acta, 40(13-14), 2315 (1995)
Osaka T, Liu XJ, Nojima M, Momma T, J. Electrochem. Soc., 146(5), 1724 (1999)
Johan MR, Shy OH, Ibrahim S, Yassin SMM, Hui TY, Solid State Ion., 196, 41 (2011)
Kim HS, Cho BW, Yun KS, Chun HS, J. Korean Ind. Eng. Chem., 7(3), 433 (1996)
Wen ZY, Itoh T, Ikeda M, Hirata N, Kubo M, Yamamoto O, J. Power Sources, 90(1), 20 (2000)
Lin CW, Hung CL, Venkateswarlu M, Hwang BJ, J. Power Sources, 146(1-2), 397 (2005)
Wang YJ, Kim D, Electrochim. Acta, 52(9), 3181 (2007)
Kim S, Park SJ, Solid State Ion., 178(13-14), 973 (2007)
Kim S, Park SJ, J. Colloid Interface Sci., 332(1), 145 (2009)