ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 10, 2011
Accepted May 3, 2011
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

순산소연소 조건에서 Drop tube furnace를 이용한 운전변수에 따른 석회석의 탈황특성 연구

A Study on the Desulfurization Characteristic of Limestone Depending on the Operating Parameters of In-Furnace Desulfurization for Oxy-Fuel Combustion Using Drop Tube Furnace

한국에너지기술연구원, 303-343 대전시 유성구 장동 71-2 1대전대학교 환경공학과, 300-716 대전시 동구 용운동 96-3 2한국기계연구원, 303-343 대전시 유성구 장동 171
Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 303-343, Korea 1Department of Environmental Engineering, Daejeon University, 96-3, Yongun-dong, Dong-gu, Daejeon 300-716, Korea 2Korea Institute of Machinery & Materials, 171, Jang-dong, Yuseong-gu, Daejeon 303-343, Korea
hklee@kier.re.kr
Korean Chemical Engineering Research, December 2011, 49(6), 857-864(8), NONE Epub 28 November 2011
downloadDownload PDF

Abstract

순산소연소는 높은 연소 효율과 적은 배가스량, 낮은 질소산화물 농도를 장점으로 하고 있으며 연소온도 조절을 위한 배가스 재순환에 의해 배출되는 연소가스중의 CO2 농도를 95%까지 농축이 가능하므로 석탄 연소설비에 대한 유망한 CCS 기술로 부각되고 있다. 본 연구는 순산소연소 조건에서 배가스의 재순환을 통한 CO2 농도 증가에 기인하는 직접 황화반응이 탈황효율에 미치는 영향을 평가하고 반응온도, CO2 농도, SO2 농도상승이 SO2 제거효율에 미치는 영향과 배가스 중 수분 등이 SO2 제거효율에 미치는 영향을 실험적으로 고찰하였다. 반응온도 1,200 ℃까지 온도 상승에 따라 SO2의 제거효율은 증가하였고 Ca/S비, CO2 농도와 수분이 증가할수록 SO2 제거효율이 증가하였다. 이러한 운전변수는 영향인자 평가를 통하여 Ca/S 비>체류시간>O2농도>반응온도>SO2농도>CO2농도>수분농도의 순으로 탈황반응에 영향을 미치는 것으로 나타났다. 또한 운전변수별 실험결과를 이용하여 로내 건식탈황에 있어서 각 운전변수별 성능 영향인자를 평가할 수 있는 반경험적 모델식을 도출하였다.
Oxy-fuel combustion with many advantages such as high combustion efficiency, low flue gas flow rate and low NOx emission has emerged as a promising CCS technology for coal combustion facilities. In this study, the effects of the direct sulfation reaction on SO2 removal efficiency were evaluated in a drop tube furnace under typical oxy-fuel combustion conditions_x000D_ represented by high concentrations of CO2 and SO2 formed by gas recirculation to control furnace combustion temperature. The effects of the operating parameters including the reaction temperature, CO2 concentration, SO2 concentration, Ca/S ratio and humidity on SO2 removal efficiency were investigated experimentally. SO2 removal efficiency increased with reaction_x000D_ temperature up to 1,200 due to promoted calcination of limestone reagent particles. And SO2 removal efficiency increased with SO2 concentrations and the humidity of the bulk gas. The increase of SO2 removal efficiency with CO2 concentrations showed that SO2 removal by limestone was mainly done by the direct sulfation reaction under oxy-fuel combustion conditions._x000D_ From the impact assessment of operation parameters, it was shown that these parameters have an effects on the desulfurization reaction by the order of the Ca/S ratio > residence time > O2 concentration > reaction temperature > SO2 concentration > CO2 concentration > water vapor. The semi-empirical model equation for to evaluate the effect of the operating parameters on the performance of in-furnace desulfurization for oxy-fuel combustion was established.

References

An YM, Jo HD, Choi WK, Park YS, Keel SI, Lee HK, Korean Chem. Eng. Res., 47(4), 512 (2009)
An YM, Jo HD, Park YS, Keel SI, Lee HK, Korea Society of Environmental Eng., 31(5), 371 (2009)
Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF, Prog. Energy Combus. Sci., 31(4), 283 (2005)
Tan Y, Croiset E, Douglas MA, Thambimuthu KV, Fuel., 85(4), 507 (2006)
Lee HK, J. SAREK., 36(12), 34 (2007)
Cheng J, Zhou J, Liu L, Zhou Z, Huang Z, Cao X, Zhao Z, Cen K, Prog. Energy Combus.Sci., 29(5), 381 (2003)
Snow MJH, Long JP, Ind. Eng. Chem. Res., 27(2), 268 (1988)
Han KH, Song YS, Ryu JI, Son JE, Jin GT, HWAHAK KONGHAK, 41(1), 86 (2003)
Zhong Q, Thermochim. Acta, 260, 125 (1995)
Liu H, Katagiri S, Okazaki K, Energy Fuels., 15(2), 403 (2000)
Chen CM, Zhao CS, Liang C, Pang KL, Fuel Process. Technol., 88(2), 171 (2007)
Chen CM, Zhao CS, Ind. Eng. Chem. Res., 45(14), 5078 (2006)
Liu H, Katagiri S, Okazaki K, Chem. Eng. Commun., 187, 199 (2001)
Zeman F, Int. J. Greenhouse Gas Control., 2(2), 203 (2007)
Cheng J, Zhou J, Liu L, Zhou Z, Huang Z, Cao X, Zhao Z, Cen K, Prog. Energy Combus.Sci., 29(5), 381 (2003)
Oh KJ, Hong SC, Kim JY, Do DS, Korea society of environmental eng., 13(1), 37 (1991)
Yoo KS, Song BH, Kim SD, Kim KT, J. Korea Solid Wastes Engineering Society., 14(6), 611 (1997)
Ortiz FJG, Ollero P, Ind. Eng. Chem. Res., 42(25), 6625 (2003)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로