Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received April 30, 2011
Accepted July 19, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
TiO2와 Graphene 혼합물을 전극으로 사용한 염료감응형 태양전지특성 연구
Dye-Sensitized Solar Cell Based on TiO2-Graphene Composite Electrodes
전북대학교 화학공학부, 561-756 전북 전주시 덕진구 덕진동 1가 664-14
Division of Chemical Engineering, Chonbuk National University, 664-14, Duckjin-dong, Duckjin-gu, Jeonju-si, Jeonbuk 561-756, Korea
shlee66@chonbuk.ac.kr
Korean Chemical Engineering Research, February 2012, 50(1), 177-181(5), NONE Epub 2 February 2012
Download PDF
Abstract
본 연구에서는 TiO2 필름에 그라핀나노시트(graphenenanosheet, GNS)의 양을 다르게 함으로써 형성한 전극을 이용하여 염료감응형 태양전지를 제작하였고 그 특성을 연구하였다. TiO2-GNS 혼합물 전극은 단순한 혼합방식에 의하여 제작되었으며, N3를 염료로 사용하여 태양전지의 효율을 평가하였다. TiO2-GNS 혼합물 전극을 사용한 염료감응형 태양전지의 전환효율은 GNS의 양에 의해 영향을 받았으며, TiO2에 GNS를 0.01 wt% 혼합한 전극을 사용하여 제작한 염료감응형 태양전지가 가장 높은 효율인 5.73%를 나타내었다. 이는 GNS를 혼합하지 않은 전극을 사용한 태양전지보다 26% 높은 효율이었다. 이와 같은 효율 증가의 원인으로는 GNS 첨가에 의한 N3의 흡착량 증가, 전자 재결합(electron_x000D_
recombination)과 back transport reaction의 감소, 전자 수송의 증가로부터 기인한 것으로 생각된다. 본 연구에서 TiO2 (anatase)와 GNS의 존재는 Field-Emission Scanning Electron Microscopy를 통하여 확인하였으며, 흡착된 염료의 양은 자외선분광기(UV-vis Spectroscopy), 전자 재결합의 감소 및 전자 수송에 대한 분석은 전기화학적 임피던스분광법(Electrochemical Impedance Spectroscopy)을 이용하였다.
Dye-sensitized solar cells(DSSCs) based on TiO2 film photo anode incorporated with different amount of grapheme nanosheet(GNS) are fabricated and their photovoltaic performance are investigated. The TiO2-GNS composite electrode has been prepared by a direct mixing method. The DSSC performance of this composite electrode was measured using N3 dye as a sensitizer. The performance of DSSCs using the TiO2-GNS composite electrodes is dependent on the GNS loading in the electrodes. The results show that the DSSCs incorporating 0.01 wt% GNS in TiO2photo anode demonstrates a maximum power conversion efficiency of 5.73%, 26% higher than that without GNS. The performance improvement is ascribed to increased N3 dye adsorption, the reduction of electron recombination and back transport reaction as well as enhancement of electron transport with the introduction of GNS. The presence of both TiO2(anatase) and GNS has been confirmed by FieldEmission Scanning Electron Microscopy(FE-SEM). The decrease in recombination due to GNS in DSSCs has been investigated by the Electrochemical Impedance Spectroscopy.
References
O’Regan B, Gratzel M, Nature., 353, 737 (1991)
Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Gratzel MG, J. Am. Chem. Soc., 127(48), 16835 (2005)
Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L, Jpn. J. Appl. Phys., 45, L638 (2006)
Kong FT, Dai SY, Wang KJ, Adv. Optoelectron., 1 (2007)
Kong FT, Dai SY, Prog.Chem., 18, 1409 (2006)
Kuang DB, Brillet J, Chen P, Takata M, Uchida S, Miura H, Sumioka K, Zakeeruddin SM, Gratzel M, “Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dyesensitized Solar Cells,” ACS. Nano, 2, 1113 (2008)
Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano. Lett., 6, 215 (2006)
Grimes CA, J. Mater. Chem., 17, 1451 (2007)
Zhu K, Neale NR, Miedaner A, Frank AJ, Nano. Lett., 7, 69 (2007)
Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB, J. Am. Chem. Soc., 130(40), 13364 (2008)
Kongkanand A, Martinez-Dominguez R, Kamat PV, Nano. Letters., 7(3), 676 (2007)
Brown P, Takechi K, Kamat PV, J. Phys.Chem. C., 112(12), 4776 (2008)
Yen CY, Lin YF, Liao SH, Weng CC, Huang CC, Hsiao YH, Ma CCM, Chang MC, Shao H, Tsai MC, Nanotechnology., 19, 1 (2008)
Sui Y, Appenzeller J, Nano. Lett., 9, 2973 (2009)
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science., 306, 666 (2004)
Cao AN, Liu Z, Chu SS, Wu MH, Ye ZM, Cai ZW, Chang YL, Wang SF, Gong QH, Liu YF, Adv. Mater., 22(1), 103 (2010)
Guo S, Dong S, Wang E, ACS Nano., 4(1), 547 (2010)
Chen S, Zhu J, Wu X, Han Q, Wang X, ACS Nano., 4(5), 2822 (2010)
Zhou X, Wu T, Hu B, Yang G, Han B, Chem. Commun., 46(21), 3663 (2010)
Gu DE, Lu Y, Yang BC, Hu YD, Chem.Commun., 18, 2435 (2008)
Woan K, Pyrgiotakis G, Sigmund W, Adv. Mater., 21(21), 2233 (2009)
Zhang H, Lu XJ, Li YM, Wang Y, Li JH, ACS Nano., 4(1), 380 (2010)
Gao L, Liu Y, Sun S, Applied Physics Letters., 96, 083113 (2010)
Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
Li D, Muller MB, Gilje S, Kane RBR, Wallace GG, Nat.Nanotechnol., 4, 25 (2009)
Dong X, Su CY, Zhang W, Zhao J, Ling Q, Huang W, Chen P, LJ, Phys. Chem. Chem. Phys., 12, 2164 (2010)
Yang N, Zhai J, Wang D, Chen Y, Jiang L, ACS Nano., 4(2), 887 (2010)
Zhang H, Lv X, Li Y, Wang Y, Li J, ACS Nano., 4(1), 380 (2010)
He BL, Dong B, Li HL, Electrochem. Commun., 9(3), 425 (2007)
Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Gratzel MG, J. Am. Chem. Soc., 127(48), 16835 (2005)
Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L, Jpn. J. Appl. Phys., 45, L638 (2006)
Kong FT, Dai SY, Wang KJ, Adv. Optoelectron., 1 (2007)
Kong FT, Dai SY, Prog.Chem., 18, 1409 (2006)
Kuang DB, Brillet J, Chen P, Takata M, Uchida S, Miura H, Sumioka K, Zakeeruddin SM, Gratzel M, “Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dyesensitized Solar Cells,” ACS. Nano, 2, 1113 (2008)
Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA, Nano. Lett., 6, 215 (2006)
Grimes CA, J. Mater. Chem., 17, 1451 (2007)
Zhu K, Neale NR, Miedaner A, Frank AJ, Nano. Lett., 7, 69 (2007)
Jennings JR, Ghicov A, Peter LM, Schmuki P, Walker AB, J. Am. Chem. Soc., 130(40), 13364 (2008)
Kongkanand A, Martinez-Dominguez R, Kamat PV, Nano. Letters., 7(3), 676 (2007)
Brown P, Takechi K, Kamat PV, J. Phys.Chem. C., 112(12), 4776 (2008)
Yen CY, Lin YF, Liao SH, Weng CC, Huang CC, Hsiao YH, Ma CCM, Chang MC, Shao H, Tsai MC, Nanotechnology., 19, 1 (2008)
Sui Y, Appenzeller J, Nano. Lett., 9, 2973 (2009)
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science., 306, 666 (2004)
Cao AN, Liu Z, Chu SS, Wu MH, Ye ZM, Cai ZW, Chang YL, Wang SF, Gong QH, Liu YF, Adv. Mater., 22(1), 103 (2010)
Guo S, Dong S, Wang E, ACS Nano., 4(1), 547 (2010)
Chen S, Zhu J, Wu X, Han Q, Wang X, ACS Nano., 4(5), 2822 (2010)
Zhou X, Wu T, Hu B, Yang G, Han B, Chem. Commun., 46(21), 3663 (2010)
Gu DE, Lu Y, Yang BC, Hu YD, Chem.Commun., 18, 2435 (2008)
Woan K, Pyrgiotakis G, Sigmund W, Adv. Mater., 21(21), 2233 (2009)
Zhang H, Lu XJ, Li YM, Wang Y, Li JH, ACS Nano., 4(1), 380 (2010)
Gao L, Liu Y, Sun S, Applied Physics Letters., 96, 083113 (2010)
Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
Li D, Muller MB, Gilje S, Kane RBR, Wallace GG, Nat.Nanotechnol., 4, 25 (2009)
Dong X, Su CY, Zhang W, Zhao J, Ling Q, Huang W, Chen P, LJ, Phys. Chem. Chem. Phys., 12, 2164 (2010)
Yang N, Zhai J, Wang D, Chen Y, Jiang L, ACS Nano., 4(2), 887 (2010)
Zhang H, Lv X, Li Y, Wang Y, Li J, ACS Nano., 4(1), 380 (2010)
He BL, Dong B, Li HL, Electrochem. Commun., 9(3), 425 (2007)