Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 2, 2011
Accepted May 30, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
염화암모늄 수용액 응고시에 Mush 층에서 성분적 대류의 선형안정성
Linear Stability of Compositional Convection in a Mushy Layer during Solidification of Ammonium Chloride Solution
수원대학교 화학공학과, 445-743 경기도 화성시 봉담읍 와우리 산 2-2
Department of Chemical Engineering, The University of Suwon, San 2-2, Wau-ri, Bongdam-eup, Hwaseong-si, Gyeonggi-Do 445-743, Korea
ighwang@suwon.ac.kr
Korean Chemical Engineering Research, February 2012, 50(1), 61-65(5), NONE Epub 2 February 2012
Download PDF
Abstract
이성분 용융액의 시간의존형 응고계에서 mush 층의 대류발생을 선형 안정성 이론으로 해석하였다. 본 연구에서는 근공융물 mush 층을 다공성 블록으로 가정한 단순화된 모델에 전파이론을 적용하여 대류발생 임계조건을 구하였다. 본 연구 모델에서는 기존의 실험결과 및 mush층 위의 액체층을 포함하여 고려한 이론적 연구의 결과보다 더 높은 임계 Rayleigh 수가 얻어졌다. mush 층의 윗 경계면에 일정압력(투과)조건을 적용하는 경우가 비투과조건에 비해 임계 Rayleigh 수를 더 작게 하며 염화암모늄 수용액의 응고실험결과와 더 근접한 것으로 조사되었다.
The onset of convection in a mushy layer is analyzed by using linear stability theory in time-dependent solidification of a binary melt. A simplified model of a near-eutectic mush, in which the mush is assumed to be a porous block, is used and the propagation theory is applied to determine the critical conditions for the onset of convection. The present critical Rayleigh number is higher than the existing experimental result and also theoretical results obtained by considering the mushy layer with an overlying liquid layer. The constant pressure (permeable) condition applied on the mush-liquid interface produces a lower critical Rayleigh number, which is closer to the experimental results of aqueous ammonium chloride solution, compared with the impermeable condition.
References
Tait S, Jahrling K, Jaupart C, Nature., 359, 7406 (1992)
Worster MG, J. Fluid Mech., 237, 649 (1992)
Chen CF, J. Fluid Mech., 293, 81 (1995)
Fowler AC, IMA J. Appl. Maths., 35, 159 (1985)
Tait S, Jaupart C, J. Geophys.Res., 97, 6735 (1992)
Emms PW, Fowler AC, J. Fluid Mech., 262, 111 (1994)
Hwang IG, Choi CK, J. Cryst. Growth, 220(3), 326 (2000)
Hwang IG, Choi CK, Korean Chem. Eng. Res., 47(2), 174 (2009)
Amberg G, Homsy GM, J. Fluid Mech., 252, 79 (1993)
Chung CA, Chen F, J. Fluid Mech., 408, 53 (2000)
Govender S, Transp. Porous Media, 67(3), 431 (2007)
Worster MG, J. Fluid Mech., 237, 649 (1992)
Chen CF, J. Fluid Mech., 293, 81 (1995)
Fowler AC, IMA J. Appl. Maths., 35, 159 (1985)
Tait S, Jaupart C, J. Geophys.Res., 97, 6735 (1992)
Emms PW, Fowler AC, J. Fluid Mech., 262, 111 (1994)
Hwang IG, Choi CK, J. Cryst. Growth, 220(3), 326 (2000)
Hwang IG, Choi CK, Korean Chem. Eng. Res., 47(2), 174 (2009)
Amberg G, Homsy GM, J. Fluid Mech., 252, 79 (1993)
Chung CA, Chen F, J. Fluid Mech., 408, 53 (2000)
Govender S, Transp. Porous Media, 67(3), 431 (2007)