ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 21, 2011
Accepted August 15, 2011
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

글리시돌을 원료로 한 비이온 계면활성제 합성에 관한 연구

A Study on Synthesis of Glycidol Based Nonionic Surfactant

동국대학교 서울 화공생물공학과, 100-715 서울특별시 중구 필동3가 26 1에이케이켐텍(주) 중앙연구소, 305-805 대전광역시 유성구 신성동 217-2
Department of Chemical and Biochemical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Korea 1Central Research Lab, AK ChemTech, 217-2 Sinseong-dong, Yuseong-gu, DaeJeon 305-805, Korea
jongchoo@dongguk.edu
Korean Chemical Engineering Research, April 2012, 50(2), 282-291(10), NONE Epub 30 March 2012
downloadDownload PDF

Abstract

글리시돌과 라우릭산으로부터 PGLE와 PGLE3 비이온 계면활성제를 합성하였으며, 합성한 계면활성제들의 구조를 1H 및 13C NMR 분석을 통하여 확인하였다. PGLE와 PGLE3 비이온 계면활성제의 CMC는 각각 3.59×10^(-2) mol/L, 8.80×10^(-2) mol/L이며, CMC에서의 표면장력 값은 각각 26.09 mN/m과 28.68 mN/m이었다. 동적 표면장력 측정 결과에 의하면 PGLE와 PGLE3 비이온 계면활성제 모두, 공기와 수용액의 계면이 계면활성제 단분자에 의하여 비교적 짧은 시간 내에 포화되었으며, 1 wt% PGLE와 PGLE3 계면활성제 시스템들의 접촉각은 각각 25.5°와 9.5°나타내었다. 비극성 오일 n-decane과 1 wt% 계면활성제 수용액 사이의 계면장력은 시간에 따라 감소하며, PGLE와 PGLE3 시스템 모두 20분 이내에 평형에 도달하였고, 평형에서의 계면장력 값은 각각 0.42 mN/m와 0.53 mN/m를 나타내었다._x000D_ PGLE 비이온 계면활성제가 PGLE3 비이온 계면활성제에 비하여 거품 안정성이 큼을 확인하였으며, 이러한 거품 안정성 측정 결과는 표면장력 측정 결과와도 일치하였다. 계면활성제, 물, 비극성 탄화수소 오일로 이루어진 3성분 시스템에 보조계면활성제를 첨가하여 25~60 ℃의 온도에서 상평형 실험을 수행한 결과, lower phase 마이크로에멀젼 혹은 oil in water 마이크로에멀젼이 excess oil 상과 평형을 이루는 2상 영역만이 관찰되었다.
The PGLE and PGLE3 nonionic surfactants were synthesized from the reaction between glycidol and lauryl acid and their structures were confirmed by 1H and 13C NMR analysis. The CMCs of PGLE and PGLE3 surfactants were found to be 3.59×10^(-2) mol/L and 8.80×10^(-2) mol/L respectively and the surface tensions at their CMC conditions were 26.09 mN/m and 28.68 mN/m respectively. Dynamic surface tension measurement has shown that the adsorption rate of surfactant molecules at the interface between air and surfactant solution was found to be relatively fast in both surfactant systems, presumably due to high mobility of surfactant molecules. The contact angles of PGLE and PGLE3 nonionic surfactants were 25.5° and 9.5° respectively. Dynamic interfacial tension measurement showed that both surfactant systems reached equilibrium in 20 minutes and the interfacial tensions at equilibrium condition in both systems were 0.42 mN/m and 0.53 mN/m respectively. The PGLE surfactant system has indicated higher foam stability than the PGLE3 surfactant system, which is consistent with surface tension measurement. The phase behavior experiments performed at 25~60 ℃ in systems containing nonionic surfactant, water, n-hydrocarbon oil and cosurfactant showed a lower phase or oil in water microemulsion in equilibrium with excess oil phase at all conditions investigated during this study.

References

Cutler WG, Kissa E, “Detergency : Theory and Technology, Surfactant Science Series,” Marcel Dekker, New York, 20, 1 (1987)
Schwartz AM, “The Physical Chemistry of Detergency ed. E. Matijevic,” Surface Colloid Sci., 195, Wiley, New York (1972)
Miller CA, Neogi P, Interfacial Phenomena: Equilibrium and Dynamic Effects, Surfactant Science Series, Marcel Dekker, New York, 17, 150 (1985)
Ko HK, Park BD, Lim JC, J. Korean Ind. Eng. Chem., 11(6), 679 (2000)
Ko HK, Lee JK, Park SJ, Park BD, Hong JK, Park SK, Lim JC, HWAHAK KONGHAK, 40(3), 316 (2002)
Lee JG, Bae SS, Cho IS, Park SJ, Park BD, Park SK, Lim JC, J. Korean Ind. Eng. Chem., 16(5), 664 (2005)
Lee JG, Bae SS, Cho IS, Park SJ, Park BD, Park SK, Lim JC, J. Korean Ind. Eng. Chem., 16(5), 677 (2005)
Lim JC, J. Korean Ind. Eng. Chem., 16(6), 778 (2005)
Lim JC, Korean Chem. Eng. Res., 45(3), 219 (2007)
Bae MJ, Lim DC, Korean Chem. Eng. Res., 47(1), 24 (2009)
Bae MJ, Lim JC, Korean Chem. Eng. Res., 47(1), 46 (2009)
Lee S, Kim BJ, Lee JG, Lim JC, Appl. Chem. Eng., 22(1), 37 (2011)
Rang MJ, Kim JD, Oh SG, Lee BM, Lim JC, Hong JD, Kang HH, Lee JG, The Recent Research Trends in Colloid and Surface Chemistry, 45, KOSFT, Seoul (2007)
Bae MJ, Lim JC, J. Korean Ind. Eng. Chem., 20(5), 473 (2009)
Mitchell DJ, Tiddy GJT, Waring L, Bostock T, Macdonald MP, J. Chem. Soc. Faraday Trans., 79(1), 975 (1983)
Ghosh O, Miller CA, J. Phys. Chem., 91(17), 4528 (1987)
Lee SK, Han JW, Kim BH, Shin PG, Park SK, Lim JC, J. Korean Ind. Eng. Chem., 10(4), 537 (1999)
Bae MJ, Lim JC, J. Korean Ind. Eng. Chem., 20(1), 15 (2009)
Lim JC, J. Korean Ind. Eng. Chem., 15(8), 929 (2004)
Lai KY, Dixit N, Foams: Theory, Measurements, and Applications, eds. Prudhomme RK, Khan SA, Surfactant Science Series, Marcel Dekker, New York, 57, 315 (1996)
Exerowa D, Kruglyakov PM, Foam and Foam Films: Theory, Experiment, Application, 5, 1, Studies in Surface Science, Elsevier, Amsterdam (1988)
Garrett PR, Defoaming: Theory and Industrial Application, ed. Garrett, P. R. 45, 1, Surfactant Science Series, Marcel Dekker,New York (1993)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로