Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received August 26, 2011
Accepted September 30, 2011
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
기포탑에서 작은기포와 큰기포의 크기 구별
Size Verification of Small and Large Bubbles in a Bubble Column
충남대학교 화학공학과, 305-764 대전시 유성구 대학로 99 1한국화학연구원, 305-600 대전시 유성구 가정로 141
School of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea 1Green Chemical Technology Division, Korea Research Institiute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Korea
Korean Chemical Engineering Research, April 2012, 50(2), 304-309(6), NONE Epub 30 March 2012
Download PDF
Abstract
동력학적 기체유출방법(dynamic gas disengagement method)과 이중전기저항 탐침방법(dual electrical resistivity probe method)을 동시에 사용하여 기포탑에서 큰 기포와 작은 기포의 크기를 구별하였다. 기포탑의 일정한 운전조건에서 기포탑 내부에 체류하는 큰 기포와 작은 기포의 체류량은, 기포탑에 유입되는 기체의 유입을 차단한 후 시간의 흐름에 따른 기포탑 내부의 압력강하 변화를 측정하여 동력학적 기체유출방법에 의해 측정하였다. 기포의 크기와 빈도수는 동력학적 기체유출방법에 의해 큰 기포와 작은 기포의 체류량을 측정하는 동일한 운전조건에서 측정하였으며 이들 자료들로부터 기포의 크기에 따른 기포의 체류량을 결정하였다. 기포탑에서 큰 기포와 작은 기포의 크기결정은 동력학적_x000D_
기체유출방법에 의해 얻은 큰 기포와 작은 기포의 체류량과 이중전기저항 탐침법에 의해 구한 크기의 범위를 아는 기포들의 체류량을 비교하여 결정하였다. 여과된 압축 공기와 물을 기체상과 연속액상을 사용하였으며, 기포탑의 직경은 0.102 m이고 높이는 1.5 m이었다. 기포탑에서 큰 기포와 작은 기포의 경계 크기는 4.0~5.0 mm 이었는데, 기체의 유속이 낮은 범위에서는 큰 기포와 작은 기포의 경계 크기가 5.0 mm 정도이었으나 기체의 유속이 상대적으로 큰 범위에서는 큰 기포와 작은 기포의 경계 크기가 4.0 mm 정도가 되었다.
Size verification of small and large bubbles in a bubble column was investigated by employing the dynamic gas disengagement (DGD) method and dual electrical resistivity probe (DRP) method, simultancously. The holdups of large and small bubbles in the bubble column in a given operating condition were obtained by means of the DGD method by measuring the pressure drop variation in the column with a variation of time after stopping the gas input into the column. The size and frequency of bubbles were measured by the DRP method in the same operating condition, from which the bubble holdup of each range of size was obtained. The verification of size in determining the large or small bubbles was decided by comparing the holdups of large or small bubbles measured by the DGD method with that measured by the DRP method. Filtered compressed air and tap water were used as a gas and a continuous liquid medium. The diameter and height of the bubble column were 0.102 m and 1.5 m, respectively. The demarcation size between the large and the small bubbles in the bubble column was 4.0~5.0 mm; the demarcation size was about 5.0 mm when the gas velocity was in the relatively low range, but about 4.0 mm when the gas velocity was in the relatively high range, within this experimental conditions.
References
Dechwer WD, Bubble Column Reactors, John Wiley and Sons Ltd. (1992)
Nigam KDP, Schumpe A, Three-phase Spagered Reactors
Kim SD, Kang Y, Studies Sur. Sci. Cat,, 159, 103 (2006)
Kang Y, Lee IK, Shin IS, Son SM, Kim SD, Jung H, Korean Chem. Eng. Res., 46(3), 451 (2008)
Krishna R, Sie ST, Fuel Process. Technol., 64(1-3), 73 (2000)
Lim DH, Jang JH, Kang Y, Jun KW, Korean Chem. Eng. Res., 49(2), 200 (2011)
Jin HR, Song YH, Kang Y, Jung H, Lee HT, Korean Chem. Eng. Res., 49(1), 83 (2011)
Behkish A, Lemoine R, Sehabiague L, Oukaci R, Morsi BI, Chem. Eng. J., 128(2-3), 69 (2007)
Chen Z, Zheng C, Feng Y, Hofmann H, Can. J. Chem. Eng., 76(2), 315 (1998)
Matsuura A, Fan LS, AIChE J., 30, 894 (1984)
Saberi S, Shakourzadμμ K, Bastoul D, Militzer J, Can. J. Chem. Eng., 70, 253 (1995)
Wang TF, Wang JF, Yang WG, Jin Y, Chem. Eng. J., 84(3), 397 (2001)
Zhang LJ, Li T, Ying WY, Fang DY, Chem. Eng. Res. Des., 86(10A), 1143 (2008)
Deswart JW, Vanvliet RE, Krishna R, Chem. Eng. Sci., 51(20), 4619 (1996)
Krishna R, Van Bate JM, Nature., 398, 208 (1999)
Krishna R, van Baten JM, Urseanu MI, Ellenberger J, Chem. Eng. Sci., 56(2), 537 (2001)
Son SM, Song PS, Lee CG, Kang SH, Kang Y, Kusakabe K, J. Chem. Eng. Jpn., 37(8), 990 (2004)
Son SM, Yun JH, Kim HT, Song PS, Kang Y, Kim SD, Korean Chem. Eng. Res., 42(2), 235 (2004)
Son SM, Kang SH, Kim UY, Kang Y, Kim SD, Chem. Eng. Processing., 46, 763 (2007)
Shin KS, Song PS, Lee CG, Kang SH, Kang Y, Kim SD, Kim SJ, AIChE J., 51(2), 671 (2005)
Cho YJ, Song PS, Kim SH, Kang Y, Kim SD, J. Chem. Eng. Jpn., 34(2), 254 (2001)
Nigam KDP, Schumpe A, Three-phase Spagered Reactors
Kim SD, Kang Y, Studies Sur. Sci. Cat,, 159, 103 (2006)
Kang Y, Lee IK, Shin IS, Son SM, Kim SD, Jung H, Korean Chem. Eng. Res., 46(3), 451 (2008)
Krishna R, Sie ST, Fuel Process. Technol., 64(1-3), 73 (2000)
Lim DH, Jang JH, Kang Y, Jun KW, Korean Chem. Eng. Res., 49(2), 200 (2011)
Jin HR, Song YH, Kang Y, Jung H, Lee HT, Korean Chem. Eng. Res., 49(1), 83 (2011)
Behkish A, Lemoine R, Sehabiague L, Oukaci R, Morsi BI, Chem. Eng. J., 128(2-3), 69 (2007)
Chen Z, Zheng C, Feng Y, Hofmann H, Can. J. Chem. Eng., 76(2), 315 (1998)
Matsuura A, Fan LS, AIChE J., 30, 894 (1984)
Saberi S, Shakourzadμμ K, Bastoul D, Militzer J, Can. J. Chem. Eng., 70, 253 (1995)
Wang TF, Wang JF, Yang WG, Jin Y, Chem. Eng. J., 84(3), 397 (2001)
Zhang LJ, Li T, Ying WY, Fang DY, Chem. Eng. Res. Des., 86(10A), 1143 (2008)
Deswart JW, Vanvliet RE, Krishna R, Chem. Eng. Sci., 51(20), 4619 (1996)
Krishna R, Van Bate JM, Nature., 398, 208 (1999)
Krishna R, van Baten JM, Urseanu MI, Ellenberger J, Chem. Eng. Sci., 56(2), 537 (2001)
Son SM, Song PS, Lee CG, Kang SH, Kang Y, Kusakabe K, J. Chem. Eng. Jpn., 37(8), 990 (2004)
Son SM, Yun JH, Kim HT, Song PS, Kang Y, Kim SD, Korean Chem. Eng. Res., 42(2), 235 (2004)
Son SM, Kang SH, Kim UY, Kang Y, Kim SD, Chem. Eng. Processing., 46, 763 (2007)
Shin KS, Song PS, Lee CG, Kang SH, Kang Y, Kim SD, Kim SJ, AIChE J., 51(2), 671 (2005)
Cho YJ, Song PS, Kim SH, Kang Y, Kim SD, J. Chem. Eng. Jpn., 34(2), 254 (2001)