Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 30, 2011
Accepted January 11, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
제올라이트에 담지된 백금 촉매를 이용한 셀룰로우스의 폴리올로의 직접 전환
Direct Conversion of Cellulose into Polyols over Pt Catalysts Supported on Zeolites
아주대학교 에너지시스템학부, 443-749 경기도 수원시 영통구 원천동 산 5 1아주대학교 화공·신소재공학부, 443-749 경기도 수원시 영통구 원천동 산 5
Division of Energy Systems Research, Ajou University, San 5 Woncheon-dong, Yeongtong-gu, Suwon 443-749, Korea 1Division of Chemical Engineering and Materials Engineering, Ajou University, San 5 Woncheon-dong, Yeongtong-gu, Suwon 443-749, Korea
edpark@ajou.ac.kr
Korean Chemical Engineering Research, June 2012, 50(3), 435-441(7), NONE Epub 5 June 2012
Download PDF
Abstract
셀룰로우스를 폴리올로 전환하기 위해 수소의 존재하에서 다양한 제올라이트에 담지된 백금촉매를 비교 연구하였다. 사용한 제올라이트로는 mordenite, Y, ferrierite, 그리고 β이며 비교를 위하여 γ-Al2O3, SiO2-Al2O3, 그리고 SiO2에 담지한 백금촉매도 사용하였다. 촉매의 물리적 특성은 등온 질소흡착실험을 통하여 분석하였으며 표면 산점의 특성은 암모니아 승온탈착분석법으로 파악하였고 백금의 담지량은 유도결합플라즈마분광법을 사용하여 확인하였으며 백금의 분산도는 일산화탄소의 화학흡착과 투과전자현미경 사진을 통하여 결정하였다. 셀룰로우스의 전환율은 주로 반응온도나 반응시간에 영향을 받는 것으로 나타났는데, 이는 고온의 물에서 발생하는 가역적인 수소이온 때문이다. 사용한 촉매중에서 폴리올의 수득률은 Pt/H-modenite(20)을 사용하였을 때에 가장 높게 나타났으며, Pt/Na-zeolite의 경우 Pt/Hzeolite에 비하여 활성이 낮은 것을 확인할 수 있었다. 폴리올의 수득률은 표면산점의 농도와 관련이 있음을 확인할 수 있었으며, 외부표면적 또한 폴리올의 수득에 영향을 주는 것을 확인할 수 있었다.
The direct conversion of cellulose into polyols in H2 was examined over Pt catalysts supported on various zeolites, viz., mordenite, Y, ferrierite, and β. For comparison, Pt catalysts supported on γ-Al2O3, SiO2-Al2O3, and SiO2 were also tested. The physical properties of the catalysts were probed with N2 physisorption. The surface acidity was measured with temperature programmed desorption of ammonia (NH3-TPD). The Pt content was quantified with inductively_x000D_
coupled plasma-atomic emission spectroscopy (ICP-AES). The Pt dispersion was determined with CO chemisorptions and transmission electron microscopy (TEM). The conversion of cellulose appeared to be mainly dependent on the reaction temperature and reaction time because it depends on the concentration of H+ ions reversibly formed in hot water. Pt/H-mordenite (20) showed the highest yield to polyols among the tested catalysts. Pt/H-zeolite was superior to Pt/Na-zeolite for this reaction. The polyol yield was dependent on the surface acid density and the external surface area.
Keywords
References
Huber GW, Iborra S, Corma A, Chem. Rev., 106(9), 4044 (2006)
Rinaldi R, Schuth F, Energy & Environmental Science., 2, 192 (2009)
Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA, Appl. Catal. B: Environ., 56(1-2), 171 (2005)
Fukuoka A, Dhepe PL, Angew. Chem.-Int. Edit., 45, 5161 (2006)
Luo C, Wang S, Liu H, Angew. Chem.-Int. Edit., 46, 7636 (2007)
Deng WP, Tan XS, Fang WH, Zhang QH, Wang Y, Catal. Lett., 133(1-2), 167 (2009)
Wang H, Zhu L, Peng S, Peng F, Yu H, Yang J, Renew. Energy., 37, 192 (2012)
You SJ, Baek IG, Kim YT, Jeong KE, Chae HJ, Kim TW, Kim CU, Jeong SY, Kim TJ, Chung YM, Oh SH, Park ED, Korean J. Chem. Eng., 28(3), 744 (2011)
Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A, Green Chem., 13, 326 (2011)
Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG, Angew. Chem.-Int. Edit., 47, 8510 (2008)
Zheng MY, Wang AQ, Ji N, Pang JF, Wang XD, Zhang T, ChemSusChem., 3, 63 (2010)
Zhang Y, Wang A, Zhang T, Chem. Commun., 46, 862 (2010)
Ding LN, Wang AQ, Zheng MY, Zhang T, ChemSusChem., 3, 818 (2010)
Zhu Y, Kong ZN, Stubbs LP, Lin H, Shen S, Anslyn EV, Maguire JA, ChemSusChem., 3, 67 (2010)
Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B, Catal. Commun., 46, 3577 (2010)
Palkovits R, Tajvidi K, Ruppert AM, Procelewska J, Catal. Commun., 47, 576 (2011)
Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A, Green Chem., 12, 972 (2010)
Liang G, Wu C, He L, Ming J, Cheng H, Zhuo L, Zhao F, Green Chem., 13, 839 (2011)
Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B, Catal. Commun., 47, 5590 (2011)
Venuto PB, Microporous Mater., 2, 297 (1994)
Tanabe K, Holderich WF, Appl. Catal. A: Gen., 181(2), 399 (1999)
Lippens BC, Linsen BG, Boer JHD, J. Catal., 3, 32 (1964)
You SJ, Kim SB, Kim YT, Park ED, Clean Technol., 16(1), 19 (2010)
Kim YT, Jung KD, Park ED, Appl. Catal. A: Gen., 393(1-2), 275 (2011)
Kim SB, You SJ, Kim YT, Lee SM, Lee H, Park K, Park ED, Korean J. Chem. Eng., 28(3), 710 (2011)
Treesukol P, Srisuk K, Limtrakul J, Truong TN, J. Phys. Chem. B, 109(24), 11940 (2005)
Cabiac A, Guillon E, Chambon F, Pinel C, Rataboul F, Essayem N, Appl. Catal. A: Gen., 402(1-2), 1 (2011)
Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Shu Y, Stottlemyer AL, Chen JG, Catal. Today., 147, 77 (2009)
Li N, Huber GW, J. Catal., 270(1), 48 (2010)
Chheda JN, Huber GW, Dumesic JA, Angew. Chem.-Int. Edit., 46, 7164 (2007)
Rinaldi R, Schuth F, Energy & Environmental Science., 2, 192 (2009)
Davda RR, Shabaker JW, Huber GW, Cortright RD, Dumesic JA, Appl. Catal. B: Environ., 56(1-2), 171 (2005)
Fukuoka A, Dhepe PL, Angew. Chem.-Int. Edit., 45, 5161 (2006)
Luo C, Wang S, Liu H, Angew. Chem.-Int. Edit., 46, 7636 (2007)
Deng WP, Tan XS, Fang WH, Zhang QH, Wang Y, Catal. Lett., 133(1-2), 167 (2009)
Wang H, Zhu L, Peng S, Peng F, Yu H, Yang J, Renew. Energy., 37, 192 (2012)
You SJ, Baek IG, Kim YT, Jeong KE, Chae HJ, Kim TW, Kim CU, Jeong SY, Kim TJ, Chung YM, Oh SH, Park ED, Korean J. Chem. Eng., 28(3), 744 (2011)
Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A, Green Chem., 13, 326 (2011)
Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG, Angew. Chem.-Int. Edit., 47, 8510 (2008)
Zheng MY, Wang AQ, Ji N, Pang JF, Wang XD, Zhang T, ChemSusChem., 3, 63 (2010)
Zhang Y, Wang A, Zhang T, Chem. Commun., 46, 862 (2010)
Ding LN, Wang AQ, Zheng MY, Zhang T, ChemSusChem., 3, 818 (2010)
Zhu Y, Kong ZN, Stubbs LP, Lin H, Shen S, Anslyn EV, Maguire JA, ChemSusChem., 3, 67 (2010)
Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B, Catal. Commun., 46, 3577 (2010)
Palkovits R, Tajvidi K, Ruppert AM, Procelewska J, Catal. Commun., 47, 576 (2011)
Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A, Green Chem., 12, 972 (2010)
Liang G, Wu C, He L, Ming J, Cheng H, Zhuo L, Zhao F, Green Chem., 13, 839 (2011)
Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B, Catal. Commun., 47, 5590 (2011)
Venuto PB, Microporous Mater., 2, 297 (1994)
Tanabe K, Holderich WF, Appl. Catal. A: Gen., 181(2), 399 (1999)
Lippens BC, Linsen BG, Boer JHD, J. Catal., 3, 32 (1964)
You SJ, Kim SB, Kim YT, Park ED, Clean Technol., 16(1), 19 (2010)
Kim YT, Jung KD, Park ED, Appl. Catal. A: Gen., 393(1-2), 275 (2011)
Kim SB, You SJ, Kim YT, Lee SM, Lee H, Park K, Park ED, Korean J. Chem. Eng., 28(3), 710 (2011)
Treesukol P, Srisuk K, Limtrakul J, Truong TN, J. Phys. Chem. B, 109(24), 11940 (2005)
Cabiac A, Guillon E, Chambon F, Pinel C, Rataboul F, Essayem N, Appl. Catal. A: Gen., 402(1-2), 1 (2011)
Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Shu Y, Stottlemyer AL, Chen JG, Catal. Today., 147, 77 (2009)
Li N, Huber GW, J. Catal., 270(1), 48 (2010)
Chheda JN, Huber GW, Dumesic JA, Angew. Chem.-Int. Edit., 46, 7164 (2007)