ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 28, 2011
Accepted November 29, 2011
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

All issues

삼상슬러리 기포탑에서 액상의 표면장력이 열전달 계수에 미치는 영향

Effects of Liquid Surface Tension on the Heat Transfer Coefficient in a Three-Phase Slurry Bubble Column

충남대학교 화학공학과, 305-764 대전광역시 유성구 대학로 99 1한국에너지기술연구원, 305-343 대전광역시 유성구 가정로 152
Department of Chemical Engineering, Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon 305-764, Korea 1Korea Institute of Energy Research, 100 Jang-dong, Yuseong-gu, Daejeon 305-600, Korea
Korean Chemical Engineering Research, June 2012, 50(3), 499-504(6), NONE Epub 5 June 2012
downloadDownload PDF

Abstract

산업현장에서 자주 접하는 액상의 물성인 표면장력이 상대적으로 작은 액상으로 구성된 삼상슬러리 기포탑에서 총괄 열전달 특성을 고찰하였다. 기포탑 내부의 열전달 현상은 기포탑 내부의 수직 열원과 기포탑 간의 열전달계를 구성하여 고찰하였으며 열전달 계수는 정상상태에서 열원표면의 온도와 기포탑 내부의 평균 온도의 차를 측정하여 결정하였다. 기체유속(UG), 슬러리 상에 포함된 고체입자의 분율(CS) 그리고 연속 액상의 표면장력(σL)이 기포탑 내부의 총 괄 열전달 계수(h)에 미치는 영향을 규명하였다. 기포탑 내부 열원 표면과 기포탑 벌크영역 간의 온도차는 시간의 변화에 따른 온도차 요동을 측정하여 그 평균값으로 결정하였다. 기포탑 내부 열원표면과 기포탑 벌크 영역 간의 온도차 요동은 연속 액상의 표면장력이 감소할수록 진폭이 감소하였으며 온도차의 평균값도 감소하였다. 내부 수직 열원과 기포탑 간의 총괄 열전달 계수는 기체의 유속과 슬러리 상에 포함된 고체입자의 분율이 증가함에 따라 증가하였으며 연속 액상의 표면장력이 증가함에 따라 감소하였다. 표면장력이 물보다 작은 연속 액상의 기포탑에서 측정된 총괄 열전달 계수는 본 연구의 범위 내에서 실험변수와 무차원군의 상관식으로 나타낼 수 있었다.
Characteristics of overall heat transfer were investigated in a three-phase slurry bubble column with relatively low surface tension media, which has been frequently encountered in the fields of industry. The heat transfer phenomena was examined in the system which was composed of a coaxial vertical heater and a proper of bubble column. The heat transfer coefficient was estimated from the measured mean value of temperature difference between the heater surface and the column proper at the steady state condition. Effects of gas velocity (UG), solid fraction in the slurry phase (CS) and surface tension (σL) of continuous liquid media on the overall heat transfer coefficient (h) in the bubble column were determined. The mean value of temperature difference was estimated from the data of temperature difference fluctuations with a variation of time. The amplitude and mean value of temperature difference fluctuations with respect to the elasped time appeared to decrease with decreasing the surface tension of liquid phase. The overall heat transfer coefficient between the immersed heated and the bubble column increased with an increase in the gas velocity or solid fraction in the slurry phase, but it decreased with an increase in the surface tension of continuous liquid media. The overall heat coefficient in the slurry bubble column with relatively low surface tension media was well correlated in term of operating variables and dimensionless groups within this experimental conditions.

References

Deckwer WD, Bubble Column Reactors, John Wiley and sons., NY. (1992)
Krishna R, Sie ST, Fuel Process. Technol., 64(1-3), 73 (2000)
Shin IS, Son SM, Lim DH, Kang Y, Jung H, Lee HT, Korean J. Chem. Eng., 27(3), 1015 (2010)
Maretto C, Krishna R, Catal. Today, 52(2-3), 279 (1999)
Krishna R, Deswart JW, Ellenberger J, Martina GB, Maretto C, AIChE J., 43(2), 311 (1997)
Behkish A, Lemoine R, Sehabiague L, Oukaci R, Morsi BI, Chem. Eng. J., 128(2-3), 69 (2007)
Seo MJ, Lim DH, Jin HR, Kang Y, Jung H, Lee HT, Korean Chem. Eng. Res., 47(6), 720 (2009)
Seo MJ, Lim DH, Shin IS, Son SM, Kang Y, Korean Chem. Eng. Res., 47(4), 459 (2009)
Saxena SC, Rao NS, Saxena AC, Chem. Eng. J., 44, 141 (1990)
Li H, Prakash A, I&EC Research., 38, 4688 (1997)
Deckwer WD, Louisi T, Zaldi A, Fan LS, I&EC Process Des. Dev., 19, 699 (1980)
Yang GQ, Luo X, Lau R, Fan LS, Ind. Eng. Chem. Res., 39(7), 2568 (2000)
Jang JH, Seo MJ, Lim DH, Kang Y, Jung H, Lee HT, Korean Chem. Eng. Res., 47(5), 587 (2009)
Kang Y, Lee IK, Shin IS, Son SM, Kim SD, Jung H, Korean Chem. Eng. Res., 46(3), 451 (2008)
Son SM, Lee KI, Kang SH, Kang Y, Kim SD, AIChE J., 53(11), 3011 (2007)
Son SM, Shin IS, Kang Y, Cho YJ, Yang HC, Korean Chem. Eng. Res., 46(1), 56 (2008)
Cho YJ, Woo KJ, Kang Y, Kim SD, Chem. Eng. Process., 41(8), 699 (2002)
Lim DH, Jang JH, Kang Y, Jun KW, Korean Chem. Eng. Res., Korean Chem. Eng. Res. (HWAHAK KONGHAK)., 49(2), 200 (2011)
Lim DH, Jang JH, Jin HR, Kang Y, Jung H, Kim SD, Kim WH, Chem. Eng. Sci., 66(14), 3145 (2011)
Shin KS, Song PS, Lee CG, Kang SH, Kang Y, Kim SD, Kim SJ, AIChE J., 51(2), 671 (2005)
Kang SH, Son SM, Kim UY, Kang Y, Cho YJ, Kang HK, J. Ind. Eng. Chem., 13(1), 33 (2007)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로