Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received November 21, 2011
Accepted February 7, 2012
- This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.
All issues
연소기체로부터 CO2를 포집하는 기포 유동층 공정에 관한 모델
A Model on a Bubbling Fluidized Bed Process for CO2 Capture from Flue Gas
Jeong-Hoo Choi†
Pil-Sang Youn
Ki-Chan Kim1
Chang-Keun Yi1
Sung-Ho Jo1
Ho-Jung Ryu1
Young-Cheol Park1
건국대학교 화학공학과, 143-701 서울시 광진구 화양동 1 1한국에너지기술연구원, 305-343 대전시 유성구 장동 71-2
Department of Chemical Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea 1Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea
choijhoo@konkuk.ac.kr
Korean Chemical Engineering Research, June 2012, 50(3), 516-521(6), NONE Epub 5 June 2012
Download PDF
Abstract
본 연구는 연소기체로부터 CO2 기체를 포집하는 기포 유동층 흡착 및 재생 반응기 공정의 주요 운전변수의 영향을 조사하기 위해서 단순화된 공정모델을 개발하였다. 반응속도와 반응기에서 고체입자의 평균체류시간을 이용하여 흡착탑과 재생탑에서 각 반응 전환율을 계산하였다. 실험실 규모 기포 유동층 공정에 적용하여 CO2 포집효율에 대한 온도, 기체유속, 고체순환속도, 연소기체 중 수분농도의 영향을 조사하였다. CO2 포집효율은 흡착탑의 온도 혹은 유속이 증가함에 따라서 감소하였다. 그러나 연소기체의 수분농도 혹은 재생탑의 온도가 증가함에 따라서 증가하였다. 계산된 CO2 포집효율은 측정값과 잘 일치하였다. 그러나 본 모델은 CO2 포집효율에 대한 고체순환속도의 영향과 잘 일치하지 않았다. 이의 해석을 위해서는 기체-고체 접촉효율에 대한 이해가 더 필요하였다.
This study developed a simple model to investigate effects of important operating parameters on performance of a bubbling-bed adsorber and regenerator system collecting CO2 from flue gas. The chemical reaction rate was used with mean particles residence time of a reactor to determine the extent of conversion in both adsorber and regenerator reactors. Effects of process parameters - temperature, gas velocity, solid circulation rate, moisture content of feed gas - on CO2 capture efficiency were investigated in a laboratory scale process. The CO2 capture efficiency decreased with increasing temperature or gas velocity of the adsorber. However, it increased with increasing the moisture content of the flue gas or the regenerator temperature. The calculated CO2 capture efficiency agreed to the measured value reasonably well. However the present model did not agree well to the effect of the solid circulation rate on CO2 capture efficiency. Better understanding on contact efficiency between gas and particles was needed to interpret the effect properly.
Keywords
References
Yi CK, Hong SW, Jo SH, Son JE, Choi JH, Korean Chem. Eng. Res., 43(2), 294 (2005)
Yi CK, Jo SH, Seo Y, Lee JB, Ryu CK, Int. J. Greenhouse Gas Control., 1(1), 31 (2007)
Lee JB, Ryu CK, Baek JI, Lee JH, Eom TH, Kim SH, Ind. Eng. Chem. Res., 47(13), 4465 (2008)
Yi CK, Jo SH, Seo Y, J. Chem. Eng. Jpn., 41(7), 691 (2008)
Abanades JC, Alonso M, Rodriguez N, Gonzalez B, Grasa G, Murillo R, Energy Procedia., 1(1), 1147 (2009)
Alonso M, Rodriguez N, Grasa G, Abanades JC, Chem. Eng. Sci., 64(5), 883 (2009)
Fang F, Li ZS, Cai NS, Ind. Eng. Chem. Res., 48(24), 11140 (2009)
Park KW, Park YS, Park YC, Jo SH, Yi CK, Korean Chem. Eng. Res., 47(3), 349 (2009)
Park YC, Jo SH, Park KW, Park YS, Yi CK, Korean J. Chem. Eng., 26(3), 874 (2009)
Seo Y, Jo SH, Ryu CK, Yi CK, J. Environ. Eng., 135(6), 473 (2009)
Strohle J, Lasheras A, Galloy A, Epple B, Chem. Eng. Technol., 32(3), 435 (2009)
Yi CK, Korean Chem. Eng. Res., 48(2), 140 (2010)
Kim KC, Kim KY, Park YC, Jo SH, Ryu HJ, Yi CK, Korean Chem. Eng. Res., 48(4), 499 (2010)
Choi JH, Yi CK, Jo SH, Korean J. Chem. Eng., 28(4), 1144 (2011)
Lapple CE, Chem.Eng., 58, 144 (1951)
Kunii D, Levenspiel O, Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Boston (1991)
Kolbitsch P, Proll T, Hofbauer H, Chem. Eng. Sci., 64(1), 99 (2009)
Yi CK, Jo SH, Seo Y, Lee JB, Ryu CK, Int. J. Greenhouse Gas Control., 1(1), 31 (2007)
Lee JB, Ryu CK, Baek JI, Lee JH, Eom TH, Kim SH, Ind. Eng. Chem. Res., 47(13), 4465 (2008)
Yi CK, Jo SH, Seo Y, J. Chem. Eng. Jpn., 41(7), 691 (2008)
Abanades JC, Alonso M, Rodriguez N, Gonzalez B, Grasa G, Murillo R, Energy Procedia., 1(1), 1147 (2009)
Alonso M, Rodriguez N, Grasa G, Abanades JC, Chem. Eng. Sci., 64(5), 883 (2009)
Fang F, Li ZS, Cai NS, Ind. Eng. Chem. Res., 48(24), 11140 (2009)
Park KW, Park YS, Park YC, Jo SH, Yi CK, Korean Chem. Eng. Res., 47(3), 349 (2009)
Park YC, Jo SH, Park KW, Park YS, Yi CK, Korean J. Chem. Eng., 26(3), 874 (2009)
Seo Y, Jo SH, Ryu CK, Yi CK, J. Environ. Eng., 135(6), 473 (2009)
Strohle J, Lasheras A, Galloy A, Epple B, Chem. Eng. Technol., 32(3), 435 (2009)
Yi CK, Korean Chem. Eng. Res., 48(2), 140 (2010)
Kim KC, Kim KY, Park YC, Jo SH, Ryu HJ, Yi CK, Korean Chem. Eng. Res., 48(4), 499 (2010)
Choi JH, Yi CK, Jo SH, Korean J. Chem. Eng., 28(4), 1144 (2011)
Lapple CE, Chem.Eng., 58, 144 (1951)
Kunii D, Levenspiel O, Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Boston (1991)
Kolbitsch P, Proll T, Hofbauer H, Chem. Eng. Sci., 64(1), 99 (2009)